Computer Poker Tutorial @ EC 2016, part 2: Equilibrium Computation

Marc Lanctot

Google DeepMind

Jul 25th, 2016
Outline

- Optimization using the sequence form
- Counterfactual Regret (CFR) Minimization
- Selected CFR extensions
- Solving 2-player Heads-up Limit Texas Hold’em
- Two open problems

Slides and references available at:
http://mlanctot.info/ecpokertutorial2016/
Extensive-form Games

Player 1 sees $J\spadesuit J\heartsuit$

Player 1 bets

Player 2 bets

Player 1 calls

... ≫ payoffs received ≫

Information set I, represents state of game from player 1’s perspective

A choice, $q = (I, a)$ is an action $a \in A(I)$ taken from a specific I

Information sets: $I \in \mathcal{I}$, (context-specific) choices $q = (I, a) \in Q$.
Defaults

Unless otherwise noted, assume:

- Notation based on [Osborne & Rubinstein ’94]
- Perfect recall
- Mixed (randomized) strategies are used σ
- Two players: $N = 2$
 - subscript i refers to a player i
 - subscript $-i$ refers to the opponent(s) of player i
- Zero-sum: for every game outcome z, $\sum_{i=1}^{N} u_i(z) = 0$
 - Set of Nash eq. profiles $\{\sigma^*\} \Leftrightarrow$ set of minimax profiles
 - Expected values for eq. $u_i(\sigma^*)$ are unique
 - Nash strategies for player i are interchangeable:
 $u_i(\sigma^*_{i,1}, \sigma^*_i) = u_i(\sigma^*_{i,2}, \sigma^*_i)$
Sequence-Form Representation

Refs: [Koller, Megiddo, von Stengel ’94][von Stengel ’07]

Let $Q_i = \{(I, a) \mid I \in \mathcal{I}, a \in A(I)\}$ be the set of choices for player i.
Let $Q_i = \{(I, a) \mid I \in \mathcal{I}, a \in A(I)\}$ be the set of choices for player i.

Encode realization plan for player i using constraints; $\Delta Q := \{x\}$ such that

- $x_i(q_{\emptyset}) = 1$
- $x_i(q) = \sum_{q' \in \text{succ}_i(q)} x_i(q')$
Let $Q_i = \{(I, a) \mid I \in \mathcal{I}, a \in A(I)\}$ be the set of choices for player i.

Encode realization plan for player i using constraints; $\Delta Q := \{x\}$ such that

- $x_i(q_\epsilon) = 1$
- $x_i(q) = \sum_{q' \in \text{succ}_i(q)} x_i(q')$
Let $Q_i = \{(I, a) \mid I \in \mathcal{I}, a \in A(I)\}$ be the set of choices for player i.

Encode realization plan for player i using constraints; $\Delta Q := $ all x such that

- $x_i(q_\emptyset) = 1$
- $x_i(q) = \sum_{q' \in \text{succ}_i(q)} x_i(q')$

⇒ Much more space-efficient than mixture over pure strategies!
Sequence-Form Linear Programming

For two-player zero-sum, setup an optimization problem:

$$\max_{x \in \Delta Q_1} \min_{y \in \Delta Q_2} xAy = \min_{y \in \Delta Q_2} \max_{x \in \Delta Q_1} xAy,$$

Subject to $Ex = e$, $x \geq 0$, $x \cdot 1 = 1$.
Sequence-Form Linear Programming

For two-player zero-sum, setup an optimization problem:

\[
\max_{x \in \Delta Q_1} \min_{y \in \Delta Q_2} x A y = \min_{y \in \Delta Q_2} \max_{x \in \Delta Q_1} x A y,
\]

Subject to \(E x = e, x \geq 0, x \cdot 1 = 1\).

Here:

- \(A\) has an entry for every \(q_1\) and \(q_2\) that result in terminal states.
- \(E\) encodes the structure of \(Q_i\)
- \(e\) is \((1, 0, 0, 0, ...)^T\)
Sequence-Form Linear Programming

For two-player zero-sum, setup an optimization problem:

$$\max_{x \in \Delta Q_1} \min_{y \in \Delta Q_2} xAy = \min_{y \in \Delta Q_2} \max_{x \in \Delta Q_1} xAy,$$

Subject to $Ex = e$, $x \geq 0$, $x \cdot 1 = 1$.

Here:
- A has an entry for every q_1 and q_2 that result in terminal states.
- E encodes the structure of Q_i
- e is $(1, 0, 0, 0, \ldots)^T$

Storing A requires $O(|Q_1||Q_2|)$ space in the worst case.
For two-player zero-sum, setup an optimization problem:

\[
\max_{x \in \Delta Q_1} \min_{y \in \Delta Q_2} xAy = \min_{y \in \Delta Q_2} \max_{x \in \Delta Q_1} xAy,
\]

Subject to \(Ex = e, x \geq 0, x \cdot 1 = 1\).

Here:

- \(A\) has an entry for every \(q_1\) and \(q_2\) that result in terminal states.
- \(E\) encodes the structure of \(Q_i\).
- \(e\) is \((1, 0, 0, 0, \ldots)^T\).

Storing \(A\) requires \(O(\|Q_1\|\|Q_2\|)\) space in the worst case.

For large games, in practice, \(A\) is sparse and so memory requirements are closer to \(|Q_1| + |Q_2|\).
Double-Oracle Methods

Refs: [Zinkevich et al. ’06][Bosansky et. al ’14]

In extensive-form:
- Each row/column corresponds to a realization plan
- Heuristics to compute "good" best responses
- Could still require enumerating entire space
Nesterov’s Excessive Gap Technique (EGT)

Refs: [Gilpin et al. ’07][Hoda et al. ’10]

Recall:

\[
\max_{x \in \Delta Q_1} f(y) = \min_{y \in \Delta Q_2} \phi(x),
\]

where \(f(y) = \min_{y \in \Delta Q_2} z\), \(\phi(x) = \max_{x \in \Delta Q_1} z\), \(z = xAy\).

Use a strongly convex function \(d_i\) on \(\Delta Q_i\), and define:

\[
f_{\mu_2}(y) = \min_{y \in \Delta Q_2} \{z + \mu_2 d_2(y)\}
\]

\[
\phi_{\mu_1}(x) = \max_{x \in \Delta Q_1} \{z - \mu_1 d_1(x)\}
\]

Then \(f_{\mu_2}(y) \geq \phi_{\mu_1}(x) \Rightarrow 0 \leq \phi(y) - f(x) \leq \mu_1 d_1^\top + \mu_2 d_2^\top\), so iteratively compute \((x^k, y^k, \mu_1^k, \mu_2^k)\) such that \(\mu_i^{k+1} < \mu_i^k\) by gradient descent.

Theorem: EGT computes an \(\epsilon\)-equilibrium in \(O(1/\epsilon)\) iterations.
Counterfactual Regret Minimization (CFR)

CFR [Zinkevich et al. 2008] is iterative strategy-updating algorithm:

\[t = 1 \]

Player 1 strategies: \(\sigma_1^1 \)
Player 2 strategies: \(\sigma_2^1 \)
Counterfactual Regret Minimization (CFR)

CFR [Zinkevich et al. 2008] is iterative strategy-updating algorithm:

\[

t = 1 \quad \text{to} \quad t = 2
\]

Player 1 strategies:
\[
\sigma_1 \rightarrow \sigma_1
\]

Player 2 strategies:
\[
\sigma_2 \rightarrow \sigma_2
\]

Let \(R_T^i \) be the external regret of using \(\sigma_t \) after \(T \) steps:

\[
R_T^i = \max_{a \in A} E \left[\sum_{t=1}^{T} (u_i(a, \sigma_t - i) - u_i(\sigma_t^i, \sigma_t - i)) \right]
\]

\[
R_T^i / T \leq \epsilon \Rightarrow \text{the average profile } (\bar{\sigma}_T^1, \bar{\sigma}_T^2) \text{ is a } 2\epsilon \text{-Nash.}
\]

\(\sigma \) is \(\epsilon \)-Nash if a player can do better by switching to \(\sigma' \).

\(\sigma \) is Nash if no player can do better by switching strategies.
Counterfactual Regret Minimization (CFR)

CFR [Zinkevich et al. 2008] is iterative strategy-updating algorithm:

\[t = 1 \quad t = 2 \quad t = 3 \quad \ldots \]

Player 1 strategies: \(\sigma_1^1 \rightarrow \sigma_1^2 \rightarrow \sigma_1^3 \quad \ldots \)

Player 2 strategies: \(\sigma_2^1 \rightarrow \sigma_2^2 \rightarrow \sigma_2^3 \quad \ldots \)

Let \(R_T^i \) be the external regret of using \(\sigma_t^i \) after \(T \) steps:

\[R_T^i = \max_{a \in A} E \left[\sum_{t=1}^T \left(u_i(a, \sigma_t^i - i) - u_i(\sigma_t^i, \sigma_t^{i-1}) \right) \right] \]

\[R_T^i / T \leq \epsilon \Rightarrow \text{the average profile} \ (\bar{\sigma}_T^1, \bar{\sigma}_T^2) \ \text{is a} \ 2\epsilon \text{-Nash.} \]

\(\sigma \) is \(\epsilon \)-Nash if a player can do \(\epsilon \) better by switching to \(\sigma' \).

\(\sigma \) is Nash if no player can do better by switching strategies.
Counterfactual Regret Minimization (CFR)

CFR [Zinkevich et al. 2008] is iterative strategy-updating algorithm:

\[t = 1 \rightarrow t = 2 \rightarrow t = 3 \rightarrow \ldots \]

Player 1 strategies: \[\sigma_1 \rightarrow \sigma_1 \rightarrow \sigma_1 \rightarrow \ldots \]
Player 2 strategies: \[\sigma_2 \rightarrow \sigma_2 \rightarrow \sigma_2 \rightarrow \ldots \]

Let \(R^T_i \) be the external regret of using \(\sigma^t \) after \(T \) steps:

\[
R^T_i = \max_{a \in A} \mathbb{E} \left[\sum_{t=1}^{T} (u_i(a, \sigma^t_{-i}) - u_i(\sigma^t_i, \sigma^t_{-i})) \right]
\]

\[
\frac{R^T_i}{T} \leq \epsilon \Rightarrow \text{the average profile} \ (\bar{\sigma}_1^T, \bar{\sigma}_2^T) \ \text{is a} \ 2\epsilon \text{-Nash.}
\]

- \(\sigma \) is \(\epsilon \)-Nash if a player can do \(\epsilon \) better by switching to \(\sigma'_i \).
- \(\sigma \) is Nash if no player can do better by switching strategies.
An extensive-form game is represented in tree form.

Example:

![Game Tree](image-url)
An extensive-form game is represented in tree form.

- $h \in H$ is possible history;
- $z \in Z, Z \subseteq H$ is a terminal history.

Example:

```
+1 +2 −2 +1
+1 −1
b a
c d c d
fe f
```

```
P1
a b
c d
c1 c2

P2
c d
e f
c d
e f
```

```
Chance

+1 +3
+1 +2 −1
−1 +2 −2
```

```
P1
a
b
c
```
An **extensive-form game** is represented in tree form.

- $h \in H$ is possible history; $z \in Z, Z \subseteq H$ is a terminal history.

- An information set $I_i \in \mathcal{I}$ is an information set for player i.

Example:

```
         *  
     c₁   c₂  
     /     /  
P1     P1  
     /     /  
   a     a  
  /     /  
P2     P2  
 /     /  
     b     b  
     /     /  
   c     c  
  /     /  
     d     d  
     /     /  
   e     e  
  /     /  
     f     f  
     /     /  
   e     e  
      |     |  
     +1   +1  
     +2   +2  
     -2   -2  
     +1   +1  
```

$P1$'s action set: $A(I_1) = \{a, b\}$.

$P1$'s action set: $A(I_2) = \{c, d\}$.

$P2$'s action set: $A(I_1') = \{c, d\}$.

$P2$'s action set: $A(I_2') = \{e, f\}$.
An **extensive-form game** is represented in tree form.

- $h \in H$ is possible history;
- $z \in Z, Z \subseteq H$ is a terminal history.

An information set $I_i \in \mathcal{I}$ is an information set for player i.

$A(I_i)$ is the action set for i at information set I_i.

Example:

```
Chance
P1
  a
  b
  a
  b
P2
  c
  d
  c
  d

I_1
I_2
I'_2
I'
```

```
-1 +3
+1 +2 −2 +1
+1 −1
c d c d
fe e f
P1
Chance
P2
I'2
I2
I1
a a b b
```
A strategy $\sigma_i \in \Sigma_i$ is a distribution from $I_i \rightarrow A(I_i)$.

A strategy σ_{-i} is a strategy for the opponents of i and chance.

A strategy profile $\sigma = (\sigma_1, \sigma_2)$.

$u_i(z)$ is the payoff to player i when players play z.

$\pi_{\sigma}(h)$ is a product of probabilities along history h.

$\pi_{\sigma_i}(h)$ is player i's contribution.
A strategy $\sigma_i \in \Sigma_i$ is a distribution from $I_i \to A(I_i)$.

- A strategy σ_{-i} is a strategy for the opponents of i and chance.
- A strategy profile $\sigma = (\sigma_1, \sigma_2)$.

\[
\begin{align*}
\text{P1} & \quad \text{P2} \\
& \quad \text{Chance} \\
\text{I}_2 & \quad \text{I}_1 \\
\text{I}_2 & \quad \text{I}_1 \\
\text{I}_1 & \quad \text{I}_1 \\
\end{align*}
\]
A strategy $\sigma_i \in \sum_i$ is a distribution from $I_i \rightarrow A(I_i)$.

A strategy σ_{-i} is a strategy for the opponents of i and chance.

A strategy profile $\sigma = (\sigma_1, \sigma_2)$.

$u_i(z)$ is the payoff to player i when players play z.

\begin{align*}
\text{Chance} \\
P1 & \quad \bullet \\
\text{I}_1 & \quad \text{I}_2 \\
\text{P2} & \quad \bullet \\
\text{I}'_1 & \quad \text{I}'_2
\end{align*}

\begin{align*}
\pi_{\sigma_i}(h) & \quad \text{is a product of probabilities along history } h. \\
\pi_{\sigma_i}(h) & \quad \text{is player } i\text{'s contribution.}
\end{align*}
A strategy $\sigma_i \in \Sigma_i$ is a distribution from $I_i \rightarrow A(I_i)$.

A strategy σ_{-i} is a strategy for the opponents of i and chance.

A strategy profile $\sigma = (\sigma_1, \sigma_2)$.

$u_i(z)$ is the payoff to player i when players play z.

$\pi^\sigma(h)$ is a product of probabilities along history h. $\pi_i^\sigma(h)$ is player i’s contribution.
CFR Algorithm (Overview)

Refs: [Zinkevich et al. ’08][Hart & Mas-Colell ’00]

1. Minimize **average immediate counterfactual regret** $R_{i,\text{imm}}^T(I)$

2. **Theorem 3**: Overall regret bounded by

 $$\frac{R_i^T}{T} \leq \sum_{I \in \mathcal{I}_i} R_{i,\text{imm}}^T(I)$$

3. **Theorem 4**: Using regret-matching to update strategies, σ^t at each information set, then

 $$\frac{R_i^T}{T} \leq \frac{\Delta_{u,i} |\mathcal{I}_i| \sqrt{|A_i|}}{\sqrt{T}}$$

 where $\Delta_{u,i}$ is a payoff range for i.
CFR Algorithm (Example)

Define **counterfactual value** as

\[v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi_{-i}(h)\pi^\sigma(h, z)u_i(z) \]

Define \(v_i(\sigma_{(I\rightarrow a)}, I) \) similarly, except take \(a \) at \(I \)
CFR Algorithm (Example)

Define **counterfactual value** as

\[v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi^\sigma_i(h) \pi^\sigma(h, z) u_i(z) \]

Define \(v_i(\sigma_{(I \rightarrow a)}, I) \) similarly, except take \(a \) at \(I \)

Repeat until sufficiently small \(\epsilon \):

1. Walk the game tree computing

\[r(I, a) = v_i(\sigma_{(I \rightarrow a)}, I) - v_i(\sigma, I) \]
CFR Algorithm (Example)

Define **counterfactual value** as

\[v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi^\sigma_i(h) \pi^\sigma(h, z) u_i(z) \]

Define \(v_i(\sigma(I \rightarrow a), I) \) similarly, except take \(a \) at \(I \)

Repeat until sufficiently small \(\epsilon \):

1. Walk the game tree computing
 \[r(I, a) = v_i(\sigma(I \rightarrow a), I) - v_i(\sigma, I) \]
 - Recursively compute \(r(I, a) \) at a particular node
 - Add to accumulated values
 \[r[I, a] += r(I, a) \]

\[\begin{align*}
 a &= .4 \\
 b &= .6 \\
 z &= \text{Player} \\
 u &= 2.2 \\
 v &= .33((.4)(2.2) + (.6)(1.9)) \\
 &= 0.66 \\

 c_1 &= .33 \\
 c_2 &= .66 \\
\end{align*} \]
CFR Algorithm (Example)

Define **counterfactual value** as

\[
v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi_{\sigma_i}(h) \pi(\sigma(h, z)) u_i(z)
\]

Define \(v_i(\sigma(I \rightarrow a), I)\) similarly, except take \(a\) at \(I\)

Repeat until sufficiently small \(\epsilon\):

1. **Walk the game tree computing**
 \[r(I, a) = v_i(\sigma(I \rightarrow a), I) - v_i(\sigma, I)\]
 - Recursively compute \(r(I, a)\) at a particular node
 - Add to accumulated values \(r[I, a] = r(I, a)\)

\[c_1 = .33 \quad c_2 = 0.66\]

\[a = .4 \quad b = .6\]

\[u = 1.9 \quad v = 0.33((0.4)(2.2)+(0.6)(1.9)) = 0.66\]

\[r[I,a] = 0.33(0.4)(2.2) - 0.66\]
Define **counterfactual value** as

\[v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi^\sigma_i(h) \pi^\sigma(h, z) u_i(z) \]

Define \(v_i(\sigma(I \rightarrow a), I) \) similarly, except take \(a \) at \(I \)

Repeat until sufficiently small \(\epsilon \):

1. **Walk the game tree computing** \(r(I, a) = v_i(\sigma(I \rightarrow a), I) - v_i(\sigma, I) \)
 1. Recursively compute \(r(I, a) \) at a particular node
 2. Add to accumulated values \(r[I, a] += r(I, a) \)

\[
\begin{align*}
 v & = 0.33((0.4)(2.2)+(0.6)(1.9)) \\
 & = 0.66 \\
 r[I,a] & += 0.33(.4)(2.2) - 0.66 \\
 r[I,b] & += 0.33(.6)(1.9) - 0.66
\end{align*}
\]

\(u = 1.9 \)
Define **counterfactual value** as

\[v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi_{-i}^\sigma(h) \pi^\sigma(h, z) u_i(z) \]

Define \(v_i(\sigma(I \to a), I) \) similarly, except take \(a \) at \(I \)

Repeat until sufficiently small \(\epsilon \):

1. Walk the game tree computing
 \(r(I, a) = v_i(\sigma(I \to a), I) - v_i(\sigma, I) \)
 - Recursively compute \(r(I, a) \) at a particular node
 - Add to accumulated values
 \(r[I, a] += r(I, a) \)
CFR Algorithm (Example)

Define **counterfactual value** as

\[v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi_{-i}(h) \pi^\sigma(h, z) u_i(z) \]

Define \(v_i(\sigma(I \rightarrow a), I) \) similarly, except take \(a \) at \(I \)

Repeat until sufficiently small \(\epsilon \):

1. Walk the game tree computing
 \[r(I, a) = v_i(\sigma(I \rightarrow a), I) - v_i(\sigma, I) \]
 1. Recursively compute \(r(I, a) \) at a particular node
 2. Add to accumulated values
 \[r[I, a] += r(I, a) \]

\[
\begin{align*}
v &= 0.66(0.4)(-0.6) + (0.6)(0.7) \\
&= 0.1188 \\
r[I,a] &+ 0.66(0.4)(-0.6) - 0.1188 \\
v &= -0.6 \\
u &= 0.7
\end{align*}
\]
Define **counterfactual value** as

\[
v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi^\sigma_i(h) \pi^\sigma(h, z) u_i(z)
\]

Define \(v_i(\sigma(I \rightarrow a), I)\) similarly, except take \(a\) at \(I\)

Repeat until sufficiently small \(\epsilon\):

1. Walk the game tree computing \(r(I, a) = v_i(\sigma(I \rightarrow a), I) - v_i(\sigma, I)\)
 1. Recursively compute \(r(I, a)\) at a particular node
 2. Add to accumulated values \(r[I, a] += r(I, a)\)
CFR Algorithm (Example)

Define **counterfactual value** as

\[v_i(\sigma, I) = \sum_{h \in I, z \in Z} \pi_{-i}(h) \pi^\sigma(h, z) u_i(z) \]

Define \(v_i(\sigma_{(I\to a)}, I) \) similarly, except take \(a \) at \(I \)

Repeat until sufficiently small \(\epsilon \):

1. Walk the game tree computing \(r(I, a) = v_i(\sigma_{(I\to a)}, I) - v_i(\sigma, I) \)
 1. Recursively compute \(r(I, a) \) at a particular node
 2. Add to accumulated values \(r[I, a] += r(I, a) \)
2. \(\sigma_i^{t+1}(I) \leftarrow \text{RegretMatching}(r[I]) \)
CFR Algorithm (Example)

Define **counterfactual value** as

\[v_{i}(\sigma, I) = \sum_{h \in I, z \in Z} \pi_{-i}(h) \pi^{\sigma}(h, z) u_{i}(z) \]

Define \(v_{i}(\sigma(I \rightarrow a), I) \) similarly, except take \(a \) at \(I \)

Repeat until sufficiently small \(\epsilon \):

1. Walk the game tree computing \(r(I, a) = v_{i}(\sigma(I \rightarrow a), I) - v_{i}(\sigma, I) \)
 1. Recursively compute \(r(I, a) \) at a particular node
 2. Add to accumulated values \(r[I, a] += r(I, a) \)
2. \(\sigma_{i}^{t+1}(I) \leftarrow \text{RegretMatching}(r[I]) \)
3. Update average profile \(\bar{\sigma} \)
CFR Extension Outline

Many (20+ !) follow-up papers on CFR.

I will cover a subset:

- Restricted Nash Responses
- Monte Carlo CFR
- Imperfect Recall Abstraction
- Multiplayer and non-zero-sum
- Sequence-Form Replicator Dynamics
- CFR-BR
- CFR+
Restricted Nash Responses

Game G is some game.

G^R is a restricted copy (e.g. player $-i$ plays σ_{fixed})

$\text{Nash}_i(G') \Leftrightarrow$ best trade-off between $\text{Nash}_i(G)$ and $\text{BR}_i(\sigma_{fixed})$
Monte Carlo CFR

Refs: [Lanctot et al. '09], [Gibson et al. '12], [Johanson et al. '12], [Burch et al. '12]

Sample parts of the tree: **sampled counterfactual values** $\tilde{v}_i(\sigma, I)$.

Unbiased estimator: $\mathbb{E}[\tilde{v}_i(\sigma, I)] = v_i(\sigma, I)$.

Theorem: with probability $1 - p$, δ is i’s min prob sampling z

$$R_i^T / T \leq \left(M_i(\sigma_i^*) \sqrt{|\max_I A(I)|} + \frac{\sqrt{2|I_i||B_i|}}{\sqrt{p}} \right) \left(\frac{1}{\delta} \right) \left(\frac{\Delta_{u,i}}{\sqrt{T}} \right)$$

E.g. chance sampling \rightarrow sample only chance outcomes
Monte Carlo CFR: External Sampling

Refs: [Lanctot et. al ’09][Gibson ’14]

Theorem: with prob $1 - p$:

$$R_i^T / T \leq \left(M_i(\sigma_i^*) \sqrt{\max_I A(I)} + \frac{\sqrt{2|I_i||B_i|}}{\sqrt{p}} \right) \left(\frac{\Delta_{u,i}}{\sqrt{T}} \right)$$

- Has worked well in (> 2)-player and large action spaces
- Tartanian7, 2014 winner of 2P NL, used variant of ext. sampling
Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al ’11][Jackson ’12]

Sample only *public* chance events!
Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al ’11][Jackson ’12]

Sample only *public* chance events!

Vectorize the tree walk (one element per opponent private card)
Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al ’11][Jackson ’12]

Sample only *public* chance events!

Vectorize the tree walk (one element per opponent private card)

Same bound as E.S. but can use equiv. classes at leaf nodes!
Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al ’11][Jackson ’12]

Sample only *public* chance events!

Vectorize the tree walk (one element per opponent private card)

Same bound as E.S. but can use equiv. classes at leaf nodes!

![Graph showing best response over time for Liar’s Dice (2,2)]

Liar’s Dice (2,2)

Slumbot, 2012 winner of HULHE, used PCS
Generalized Monte Carlo CFR

Refs: [Gibson et al. '12]

Given any estimator for counterfactual values $\hat{v}(I, a)$ with bounded range $\hat{\Delta}$:

Theorem: with prob $1 - p$,

$$
\frac{R_T}{T} \leq |I_i| \left(\frac{\hat{\Delta}_i \sqrt{\max_I |A(I)|}}{\sqrt{T}} + \sqrt{\frac{\text{Var}}{pT} + \frac{\text{Cov}}{p} + \frac{E^2}{p}} \right),
$$

where:

- **Var** is max variance of diff in regret and est. regret at t,
- **Cov** is max covariance of diff in regret and est. regret at t, t',
- **E** is the max expectation of diff in regret and est. regret (bias) at t, over all time steps t (and t'), info sets I, actions $a \in A(I)$.
Imperfect Recall Abstraction

History $h \in \tilde{I}$, define $X_i(h) = (\tilde{I}_1, a_1), (\tilde{I}_2, a_2), \cdots$ as player i’s choice sequence for all I_k belonging to i in h.
Imperfect Recall Abstraction

History $h \in \tilde{I}$, define $X_i(h) = (\tilde{I}_1, a_1), (\tilde{I}_2, a_2), \cdots$ as player i’s choice sequence for all I_k belonging to i in h.

Perfect recall: for all $h, h' \in \tilde{I} \iff X_i(h) = X(h')$
Imperfect Recall Abstraction

History $h \in \tilde{I}$, define $X_i(h) = (\tilde{I}_1, a_1), (\tilde{I}_2, a_2), \cdots$ as player i’s choice sequence for all I_k belonging to i in h.

Perfect recall: for all $h, h' \in \tilde{I} \iff X_i(h) = X(h')$

Not every $h \in \tilde{I}$ is necessarily relevant for computing approx. $\sigma(\tilde{I})!!$
Imperfect Recall Abstraction

History $h \in \tilde{I}$, define $X_i(h) = (\tilde{I}_1, a_1), (\tilde{I}_2, a_2), \cdots$ as player i’s choice sequence for all I_k belonging to i in h.

Perfect recall: for all $h, h' \in \tilde{I} \iff X_i(h) = X(h')$

Not every $h \in \tilde{I}$ is necessarily relevant for computing approx. $\sigma(\tilde{I})$!!

Purposely forget parts of $h \in \tilde{I}$ and $h' \in \tilde{I}'$; \rightarrow merge $I = \tilde{I} \cup \tilde{I'}$.
Imperfect Recall Abstraction

History $h \in \mathcal{I}$, define $X_i(h) = (\mathcal{I}_1, a_1), (\mathcal{I}_2, a_2), \cdots$ as player i’s choice sequence for all I_k belonging to i in h.

Perfect recall: for all $h, h' \in \mathcal{I} \iff X_i(h) = X(h')$

Not every $h \in \mathcal{I}$ is necessarily relevant for computing approx. $\sigma(\mathcal{I})$!!

Purposely *forget* parts of $h \in \mathcal{I}$ and $h' \in \mathcal{I}'$; \rightarrow merge $I = \mathcal{I} \cup \mathcal{I}'$.

Benefits:

1. Huge savings in memory
Imperfect Recall Abstraction

History $h \in \tilde{I}$, define $X_i(h) = (\tilde{I}_1, a_1), (\tilde{I}_2, a_2), \cdots$ as player i’s choice sequence for all I_k belonging to i in h.

Perfect recall: for all $h, h' \in \tilde{I} \iff X_i(h) = X(h')$

Not every $h \in \tilde{I}$ is necessarily relevant for computing approx. $\sigma(\tilde{I})!!$

Purposely forget parts of $h \in \tilde{I}$ and $h' \in \tilde{I}'$; \rightarrow merge $I = \tilde{I} \cup \tilde{I}'$.

Benefits:

1. Huge savings in memory
2. Often clear what should be forgotten
Imperfect Recall Abstraction

History $h \in \mathcal{I}$, define $X_i(h) = (\bar{I}_1, a_1), (\bar{I}_2, a_2), \cdots$ as player i’s choice sequence for all I_k belonging to i in h.

Perfect recall: for all $h, h' \in \mathcal{I} \iff X_i(h) = X(h')$

Not every $h \in \mathcal{I}$ is necessarily relevant for computing approx. $\sigma(\mathcal{I})$!!

Purposely *forget* parts of $h \in \mathcal{I}$ and $h' \in \mathcal{I}'$; \rightarrow merge $I = \mathcal{I} \cup \mathcal{I}'$.

Benefits:

1. Huge savings in memory
2. Often clear what should be forgotten
3. CFR algorithm still runs(!)
 - But does it still work/converge?
 - In theory: yes! Under some (somewhat restrictive) assumptions.
 - In practice: yes, very well!
Multi (> 2) player and non-zero sum

Refs: [Abou Risk & Szafron ’10][Gibson & Szafron ’11][Gibson et al. ’13][Gibson ’14]

Generally not much known about CFR in this case.

But here again, algorithm is still well-defined.

Gibson 2014:

- Regret min. removes iteratively strictly-dominated strategies.
- Extend to *dominated actions* and counterfactual values.
- CFR removes iterative strictly-dominated actions.
- 2-player game: If $R^T_i / T < \epsilon$, converges to $2(\epsilon + \delta_u)$-Nash.

Sequence-Form Replicator Dynamics

Refs: [Gatti et al. ’13][Lanctot ’14]

Recall Q set of choices (I, a), and $x_i(q)$ realization weight on q:

For player i, for each $q \in Q_i$, update:

$$x_i(q, t + 1) = x_i(q, t) \frac{u_i(x_i \rightarrow g_q)}{u_i(x)}$$
Sequence-Form Replicator Dynamics

Refs: [Gatti et al. ’13][Lanctot ’14]

Recall Q set of choices (I, a), and $x_i(q)$ realization weight on q:

For player i, for each $q \in Q_i$, update:

$$x_i(q, t + 1) = x_i(q, t) \frac{u_i(x_i \rightarrow g_q)}{u_i(x)}$$

$x_i \rightarrow g_q$ is x

except player i

uses $g_q(x_i)$
Recall Q set of choices (I, a), and $x_i(q)$ realization weight on q:

For player i, for each $q \in Q_i$, update:

$$x_i(q, t + 1) = x_i(q, t) \frac{u_i(x \rightarrow g_q)}{u_i(x)}$$

$$g_q(x_i, q') = \begin{cases}
1 & \text{if } q' \in X_i(q), \\
\frac{x_i(q')}{\text{Ancestor}(q, q')} & \text{if } X_i(q) \sqsubseteq X_i(q'), \\
0 & \text{otherwise},
\end{cases}$$
Sequence-Form Replicator Dynamics

Refs: [Gatti et al. '13][Lanctot '14]

For player i, for each $q \in Q_i$, update:

$$x_i(q, t + 1) = x_i(q, t) \frac{u_i(x_i \rightarrow g_q)}{u_i(x)}$$

except player i uses $g_q(x_i)$

$$g_q(x_i, q') = \begin{cases}
1 & \text{if } q' \in X_i(q), \\
\frac{x_i(q')}{\text{Ancestor}(q, q')} & \text{if } X_i(q) \sqsubseteq X_i(q'), \\
0 & \text{otherwise,}
\end{cases}$$

- $g_q(x_i)$ is a “projection”: i plays q if possible, else plays x_i
- Implements a form of counterfactual regret minimization
- In 3-player Kuhn poker, finds ”best” equilibrium!
Minimize regret against a best responder
Best responder uses *full unabstracted space*
Use accelerated algorithms for computing best response
Used in diabetes patient simulation [Chen & Bowling ’12]
Refs: [Tammelin et al. ’11]

Regret matching plus (RM$^+$): never accumulate negative regret!
Refs: [Tammelin et al. ’11]

Regret matching plus (RM$^+$): never accumulate negative regret!

Theorem 1: T steps: RM$^+$ has external regret $\Delta_u \sqrt{|A|T}$.
Regret matching plus (RM\(^+\)): never accumulate negative regret!

Theorem 1: \(T \) steps: RM\(^+\) has external regret \(\Delta_u \sqrt{|A|T} \).

Tracking regret [Herbster & Warmuth ’98]: hindsight strategy can change \((k - 1)\) times.

Theorem 2: \(T \) step: RM\(^+\) has tracking regret \(k\Delta_u \sqrt{|A|T} \).

Theorem 3: \(T \) step: CFR\(^+\) has regret \(O(|I_1| + |I_2|) \sqrt{|A|T} \).
Solving 2-player HULHE

Refs: [Bowling et al. ’15]
Solving 2-player HULHE

Refs: [Bowling et al. ’15]
Solving 2-player HULHE

Refs: [Bowling et al. ’15]

Legend: fold raise call
Open Problem #1: Stronger-than-Nash?

Can a new variant of CFR converge to a:

- Sequential equilibrium?
- Trembling-hand perfect equilibrium?
- Strong equilibrium?
Does/can CFR converge to an (extensive-form) correlated equilibrium?
Other work

- FSICFR (chance-sampling variant) [Neller & Hnath ’11]
- CFR with decomposition [Burch et al. ’12][Jackson ’14]
- Regret transfer [Brown and Sandholm ’14]
- Regret-based Pruning [Brown and Sandholm ’14]
- Automated abstraction and solving [Brown and Sandholm ’15]
- Warm starting CFR [Brown and Sandholm ’16]
- Online search [Lisý, Lanctot, and Bowling ’15][Heinrich & Silver ’15]
- Relationship to optimization [Waugh and Bagnell ’15]
- Fictitious Self-play [Heinrich, Lanctot, and Silver ’15]
- End-to-end learning [Waugh et al. ’15][Heinrich and Silver ’16]
- Application to security domains [Lisy, Davis, and Bowling ’16]
- ...
Thanks, Questions, Info

Thank you for listening! Any questions?

Part 1: Sam Ganzfried
sam.ganzfried@gmail.com
http://www.ganzfriedresearch.com

Part 2: Marc Lanctot
marc.lanctot@gmail.com
http://mlanctot.info
http://mlanctot.info/ecpokertutorial2016