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Outline

@ Optimization using the sequence form

@ Counterfactual Regret (CFR) Minimization

@ Selected CFR extensions

@ Solving 2-player Heads-up Limit Texas Hold’em
@ Two open problems

Slides and references available at:
http://mlanctot.info/ecpokertutorial2016/
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Extensive-form Games

Player 1 sces J#JO | |

|
- T‘ ~ - Information set I,

i

I

represents state of game

» /\\ i " from player 1’s perspective
P \ I
A choice, ¢ = (I,a) \\ _Player 2 bets ’I
is an action a € A(I) \\;\‘ i //
taken from a specific T ‘\\ Player 1 calls ///

< payoffs received >
Information sets: I € Z, (context-specific) choices ¢ = (1,a) € Q.



Defaults

Unless otherwise noted, assume:

@ Notation based on [Osborne & Rubinstein '94]
@ Perfect recall

@ Mixed (randomized) strategies are used o
@ Two players: N =2
» subscript i refers to a player i
» subscript —i refers to the opponent(s) of player i
@ Zero-sum: for every game outcome z, > | u;(z) = 0

» Set of Nash eq. profiles {o*} < set of minimax profiles

» Expected values for eq. u;(c*) are unique

» Nash strategies for player i are interchangeable:
ui(or;fl, o) = ”i(azza or;)



Sequence-Form Representation

Refs: [Koller, Megiddo, von Stengel '94][von Stengel ’07]
Let O, ={(l,a) | I € Z,a € A(I)} be the set of choices for player i.



Sequence-Form Representation

Refs: [Koller, Megiddo, von Stengel '94][von Stengel ’07]
Let O, ={(l,a) | I € Z,a € A(I)} be the set of choices for player i.

Encode realization plan for player i using constraints; AQ := all x such
that

® xi(qp) =1

° xi(q) = Zq/esucq(q) xi(q/)



Sequence-Form Representation

Refs: [Koller, Megiddo, von Stengel '94][von Stengel ’07]
Let O, ={(l,a) | I € Z,a € A(I)} be the set of choices for player i.

Encode realization plan for player i using constraints; AQ := all x such
that

° xi(qp) = 1
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Sequence-Form Representation

Refs: [Koller, Megiddo, von Stengel '94][von Stengel ’07]
Let O, ={(l,a) | I € Z,a € A(I)} be the set of choices for player i.

Encode realization plan for player i using constraints; AQ := all x such
that

® xi(qp) =1

°® xi(gq) = Zq’esucci(q) xi(q')

= Much more space-efficient than mixture over pure strategies! 600



Sequence-Form Linear Programming
For two-player zero-sum, setup an optimization problem:

max min XAy = min max XAy,
x€AQ; yEAQ, YEAQ: XxEAQ,

Subjectto Ex=¢,x > 0,x-1=1.



Sequence-Form Linear Programming
For two-player zero-sum, setup an optimization problem:

max min XAy = min max XAy,
x€AQ; yEAQ, YEAQ: XxEAQ,

Subjectto Ex=¢,x > 0,x-1=1.
Here:

@ A has an entry for every ¢; and ¢, that result in terminal states.
@ E encodes the structure of Q;
@ eis (1,0,0,0,..)"
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Storing A requires O(|Q1]|Q2|) space in the worst case.



Sequence-Form Linear Programming
For two-player zero-sum, setup an optimization problem:

max min XAy = min max XAy,
x€AQ; yEAQ, YEAQ: XxEAQ,

Subjectto Ex=¢,x > 0,x-1=1.
Here:

@ A has an entry for every ¢; and ¢, that result in terminal states.
@ E encodes the structure of Q;
@ eis (1,0,0,0,..)"

Storing A requires O(|Q1]|Q2|) space in the worst case.

For large games, in practice, A is sparse and so memory requirements
are closer to |Q1| + |0/



Double-Oracle Methods
Refs: [Zinkevich et al. 06][Bosansky et. al '14]

new strategies n13, n23 added best responses do not improve result
 Start n2l n22

/ Expand Restricted Game 4\ /yTerminate 4>©
O nl | 2 |-1

Restricted Game Compute Best Response
m2 (0|3

\ Solve Restricted Game /

NE = <(1/2,1/2); (2/3, 1/3)>

In extensive-form:

@ Each row/column corresponds to a realization plan
@ Heuristics to compute "good” best responses
@ Could still require enumerating entire space



Nesterov’s Excessive Gap Technique (EGT)

Refs: [Gilpin et al. '07][Hoda et al. *10]

Recall:
max = min ¢(x),
max £(y) = min 6(x
where f(y) = minycpp, 2, ¢(X) = maxgeag, 2, 2 = XAy.

Use a strongly convex function d; on AQ;, and define:

Ju(y) = ;Iéiin{Z + p2dr(y) }

by (x) = Xmeg{z — wdi(x)}

Then f,(y) > ¢ (x) = 0<o(y) —f(x) < md] + pad; , S0
iteratively compute (x*, y*, %, 1%) such that u*™' < ;¥ by gradient
descent.

Theorem: EGT computes an e-equlibrium in O(1/e) iterations.



Counterfactual Regret Minimization (CFR)

CFR [zinkevich et al. 2008] is iterative strategy-updating algorithm:

r=1
Player 1 strategies: o}
Player 2 strategies: o}
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Counterfactual Regret Minimization (CFR)

CFR [zinkevich et al. 2008] is iterative strategy-updating algorithm:

t=1 t=2
Player 1 strategies: o] — o}
Player 2 strategies: !

2
g, — 25
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Counterfactual Regret Minimization (CFR)

CFR [zinkevich et al. 2008] is iterative strategy-updating algorithm:

t=1 t=2 t=3
Player 1 strategies: o] — o} — o}
Player 2 strategies: o} — o} — 3

03
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Counterfactual Regret Minimization (CFR)

CFR [zinkevich et al. 2008] is iterative strategy-updating algorithm

t=1 t=2 t=3
Player 1 strategies: o] — o} — o}
Player 2 strategies: o} — o} — o3

Let RY be the external regret of using o' after T steps:
T

RlT = I;lélj(E Z (Mi(a7 O-t—i) - M,'(O'f, Ut—i))

t=1
RI'/)T <e = the average profile (57,57) is a 2¢-Nash.

@ o is e-Nash if a player can do ¢ better by switching to ;.
@ o is Nash if no player can do better by switching strategies.
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Terminology | : Extensive-Form Games

Example:

An extensive-form game is
represented in tree form.

Chance

P1

P2 Ai




Terminology | : Extensive-Form Games

Example:
An extensive-form game is Chance
represented in tree form. ¢~
Pl
@ h € H is possible history; al \b
z € Z,Z C H is a terminal history. 1
P2 ¢ d
€
-1 +3




Terminology | : Extensive-Form Games

Example:

An extensive-form game is

represented in tree form. Chance

P1
@ h € H is possible history;
z € Z,Z C H is a terminal history.
@ An information setI; € 7 is an P

information set for player i.
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Terminology | : Extensive-Form Games

Example:
An extensive-form game is

represented in tree form. Chance
P1 I,
@ h € H is possible history;
z € Z,Z C H is a terminal history. I,
@ Aninformation setI; € 7 is an P
information set for player i. I

@ A(I;) is the action set for i at
information set I7,.
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Terminology Il : Strategies

A strategy o; € ¥; is a distribution
from I, — A(I,)

Chance
P1 I,
I,
P2
I
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Terminology Il : Strategies

A strategy o; € ¥; is a distribution

Chance
from I; — A(L;).

P1

@ A strategy o_; is a strategy for
the opponents of i and chance.

@ A strategy profile o = (01, 02).
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A strategy o; € ¥; is a distribution
from I; — A(L;).

@ A strategy o_; is a strategy for
the opponents of i and chance.

@ A strategy profile o = (01, 02).

@ u,(z) is the payoff to player i
when players play z.

Chance
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Terminology Il : Strategies

A strategy o; € ¥; is a distribution
from I; — A(L;).

@ A strategy o_; is a strategy for
the opponents of i and chance.

@ A strategy profile o = (01, 02).

@ u,(z) is the payoff to player i
when players play z.

@ 77(h) is a product of
probabilities along history #.
w7 (h) is player i’s contribution.

Chance ,3

P1
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CFR Algorithm (Overview)
Refs: [Zinkevich et al. '08][Hart & Mas-Colell '00]

1. Minimize average immediate counterfactual regret R, (/)

2. Theorem 3: Overall regret bounded by

RT/T < ZRl ~+

I€Z;

3. Theorem 4: Using regret-matching to update strategies, o' at each
information set, then

g7 < Dul TV IAT
i —= ﬁ

where A, ; is a payoff range for i.

12/29



CFR Algorithm (Example)
Define counterfactual value as

vi(o,1) = Z 77 (W) (h, 2)u;(2)

hel zeZ

Define vi(o(;q), 1) similarly, except take a at /
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CFR Algorithm (Example)

Define counterfactual value as

vi(o, 1) = Y w7 (h, 2)ui(2)

hel,zeZ

Define vi(o(;_q), 1) similarly, except take a at

¢, =.33

Repeat until sufficiently small e:

@ Walk the game tree computing S g
r(l,a) = vi(g(lﬁaﬁl) - Vi(O', I) a=4 b=.6

u=1.9 u=0.7
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CFR Algorithm (Example)
Define counterfactual value as

vi(o,1) = Z 77 (W) (h, 2)u;(2)

hel zeZ

Define vi(o(;q), 1) similarly, except take a at /

Repeat until sufficiently small e: : ¢,=0.66

@ Walk the game tree computing R !
r(la a) - Vi(o-(lﬁaﬁl) - V,‘(O’, 1) a=4 b=.6
© Recursively compute (I, a) v =0.33((0.4)(2.2)+(0.6)(1.9))
at a particular node =0.66
@ Add to accumulated values ‘
rll,a] +=r(I,a) u=2.2

u=1.9
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CFR Algorithm (Example)

Define counterfactual value as

vi(o, 1) = Y w7 (h, 2)ui(2)

hel,zeZ

Define vi(o(;_q), 1) similarly, except take a at /

Repeat until sufficiently small e: ¢, =33 c,=0.66

@ Walk the game tree computing RN A 7 »
r(l,a) :V,‘(U([*)a),l) —Vl‘(O',I) a=4
@ Recursively compute r(1,a)

at a particular node
@ Add to accumulated values :
r|l,a] +=r(I,a) u=2.2

v =0.33((0.4)(2.2)+(0.6)(1.9))
=0.66

r[La] += 0.33(.4)(2.2) — 0.66
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CFR Algorithm (Example)
Define counterfactual value as

vi(o,1) = Z 77 (h)7 (h, 2)ui(z)

hel zeZ

Define vi(o(;q), 1) similarly, except take a at /

Repeat until sufficiently small e: ¢, =33 ¢,=0.66

@ Walk the game tree computing R . ) )
r(l,a) = vi(o(15a), 1) —vilo, D) a=4/ \b=6
@ Recursively compute r(1,a) v =0.33((0.4)(2.2)+(0.6)(1.9))
at a particular node =0.66
@ Add to accumulated values r[La] += 0.33(.4)(2.2) - 0.66

ril,a] +=r(I,a) u=2.2 r[Lb] += 0.33(.6)(1.9) — 0.66

u=1.9
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CFR Algorithm (Example)
Define counterfactual value as

vi(o,1) = Z 77 (W) (h, 2)u;(2)

hel zeZ

Define vi(o(;q), 1) similarly, except take a at /

Repeat until sufficiently small e: ¢,=33

@ Walk the game tree computing
r(lv a) = Vi(0(1—>a)71) - V,'(O',I)
@ Recursively compute r(1,a)
at a particular node
@ Add to accumulated values
rll,a) +=r(I,a)

v =0.66((.4)(=.6) + (.6)(.7))
=0.1188

u=0.7
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CFR Algorithm (Example)
Define counterfactual value as

vi(o,1) = Z 77 (W) (h, 2)u;(2)

hel zeZ

Define vi(o(;q), 1) similarly, except take a at /

Repeat until sufficiently small e: ¢,=.33

@ Walk the game tree computing
r(lv a) = Vi(0(1—>a)71) - V,'(O',I)
@ Recursively compute r(1, a)
at a particular node
© Add to accumulated values ~ rllal +=0.66(4)(-6) = 0.1188 |
rll,a) +=r(I,a)

v =0.66((.4)(-.6) + (.6)(.7))
=0.1188

u=0.7
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CFR Algorithm (Example)
Define counterfactual value as

vi(o,1) = Z 77 (W) (h, 2)u;(2)

hel zeZ

Define vi(o(;q), 1) similarly, except take a at /

Repeat until sufficiently small e: ¢,=.33

@ Walk the game tree computing
r(lv a) = Vi(0(1—>a)71) - V,'(O',I)
@ Recursively compute r(1, a)
at a particular node
© Addto accumulated values ~ rllal +=0.66(4) (-0~ 0.1188
rll,a) +=r(I,a) r{Lb] += 0.66(.6)(.7) — 0.1188

v =0.66((.4)(-.6) + (.6)(.7))
=0.1188

u=0.7
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CFR Algorithm (Example)

Define counterfactual value as

vi(o, 1) = Y w7 (h, 2)ui(2)

hel,zeZ

Define vi(o(;_q), 1) similarly, except take a at

Repeat until sufficiently small e: ¢, =33

@ Walk the game tree computing S .
r(l,a) = Vi(o'(lﬁaﬁl) - Vi(a7 ]) a=4 b=.6
@ Recursively compute r(1,a)
at a particular node
@ Add to accumulated values :
r|l,a] +=r(I,a) u=2.2

@ o't (1) « RegretMatching(r[1))

u=i.9 u=0.7
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CFR Algorithm (Example)

Define counterfactual value as

vi(o, 1) = Y w7 (h, 2)ui(2)

hel,zeZ

Define vi(o(;_q), 1) similarly, except take a at

¢, =.33

Repeat until sufficiently small e:

@ Walk the game tree computing S g
r(I,a) = vi(a(lﬁaﬁl) - Vi(O', 1) a=4 b=.6
@ Recursively compute (I, a)
at a particular node
@ Add to accumulated values :
r|l,a] +=r(I,a) u=2.2
@ o' (1) + RegretMatching(r(1])
© Update average profile & u:' L9 u‘=0'7
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CFR Extension Outline

Many (20+ !) follow-up papers on CFR.

| will cover a subset:

Restricted Nash Responses
Monte Carlo CFR

Imperfect Recall Abstraction

Multiplayer and non-zero-sum
Sequence-Form Replicator Dynamics
e CFR-BR

o CFR+

14/29



Restricted Nash Responses

Refs: [Johanson and Bowling '08, '09][Ponsen et al. ’12]

Game G* Game G Game G’

@ Game G is some game.
e GRis a restricted copy (e.g. player —i plays ofieq)
@ Nash;(G’) < best trade-off between Nash;(G) and BR;(0/ieq)

15/29



Monte Carlo CFR

Refs: [Lanctot et. al ’09], [Gibson et al. '12], [Johanson et al. *12], [Burch et al. '12]

Sample parts of the tree: sampled counterfactual values v;(o, ).
Unbiased estimator: E[v;(o,1)] = vi(o,I).

AN

Outcome sampling
Theorem: with probability 1 — p, § is i’s min prob sampling z
2|Z; i u,i
RI/T < (Mi(Uf) | max A(1)] + "HB> <1> <A)
1 N 5

VT
E.g. chance sampling — sample only chance outcomes
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Monte Carlo CFR: External Sampling

Refs: [Lanctot et. al ’09][Gibson ’14]

Eg. for player 1

my node

opp. node

my node

opp. node

Theorem: with prob 1 — p:

s 2|Z||Bi] \ [ Au,i
R,-T/Ts<M,<a,-> g AT+ Y2 )(ﬁ)

@ Has worked well in (> 2)-player and large action spaces
@ Tartanian7, 2014 winner of 2P NL, used variant of ext. sampling
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Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al '11][Jackson '12]

Sample only public chance events!
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Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al '11][Jackson '12]
Sample only public chance events!

Vectorize the tree walk (one element per opponent private card)
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Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al ’11][Jackson '12]
Sample only public chance events!
Vectorize the tree walk (one element per opponent private card)

Same bound as E.S. but can use equiv. classes at leaf nodes!
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Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al ’11][Jackson '12]
Sample only public chance events!
Vectorize the tree walk (one element per opponent private card)

Same bound as E.S. but can use equiv. classes at leaf nodes!

-1 CS ——
o N PCS

ot

Best Response
S
[
K
X
¥
/

10° 10* 10°
Time (seconds)

Liar’s Dice (2,2)

Slumbot, 2012 winner of HULHE, used PCS
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Generalized Monte Carlo CFR

Refs: [Gibson et al. '12]

Given any estimator for counterfactual values v(1, a) with bounded
range A:

Theorem: with prob 1 — p,

T Air/max; |A(D)| Var Cov E?
)7 <) | SR Y, Cory B

pT  p p

Y

where:

@ Var is max variance of diff in regret and est. regret at ¢,

@ Cov is max covariance of diff in regret and est. regret at ¢, 7/,

@ E is the max expectation of diff in regret and est. regret (bias) at ¢,
over all time steps ¢ (and 7’), info sets 1, actions a € A(I).
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Imperfect Recall Abstraction

Refs: [Waugh et al. ’09][Lanctot et al. '12][Kroer & Sandholm '14, ’16]

History h € I, define X;(h) = (I, a1), (I, a3), - - - as player i’s choice
sequence for all I; belonging to i in A.
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Imperfect Recall Abstraction

Refs: [Waugh et al. ’09][Lanctot et al. '12][Kroer & Sandholm '14, ’16]

History h € I, define X;(h) = (I, a1), (I, a3), - - - as player i’s choice
sequence for all I; belonging to i in A.

Perfect recall: for all h, i € I < X;(h) = X(I')

Not every h € I is necessarily relevant for computing approx. o (I)!!
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Refs: [Waugh et al. ’09][Lanctot et al. '12][Kroer & Sandholm '14, ’16]
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Imperfect Recall Abstraction

Refs: [Waugh et al. ’09][Lanctot et al. '12][Kroer & Sandholm '14, ’16]

History h € I, define X;(h) = (I, a1), (I, a3), - - - as player i’s choice
sequence for all I; belonging to i in A.

Perfect recall: for all h, i’ € I < X;(h) = X(I)

Not every h € I is necessarily relevant for computing approx. o (I)!!
Purposely forgetparts of he Iand b’ € I'; — merge [ =1 U T
Benefits:

@ Huge savings in memory

20/29



Imperfect Recall Abstraction
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sequence for all I; belonging to i in A.
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Imperfect Recall Abstraction

Refs: [Waugh et al. ’09][Lanctot et al. '12][Kroer & Sandholm '14, ’16]

History h € I, define X;(h) = (I, a1), (I, a3), - - - as player i’s choice
sequence for all I; belonging to i in A.

Perfect recall: for all h, i € I < X;(h) = X(I')

Not every h € I is necessarily relevant for computing approx. o (I)!!

Purposely forgetparts of he Iand b’ € I'; — merge [ =1 U T
Benefits:
@ Huge savings in memory

© Often clear what should be forgotten
© CFR algorithm still runs(!)

» But does it still work/converge?
» In theory: yes! Under some (somewhat restrictive) assumptions.
» In practice: yes, very well!
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Multi (> 2) player and non-zero sum

Refs: [Abou Risk & Szafron '10][Gibson & Szafron '11][Gibson et al. 13][Gibson '14]
Generally not much known about CFR in this case.
But here again, algorithm is still well-defined.

Gibson 2014:

@ Regret min. removes iteratively strictly-dominated strategies.
@ Extend to dominated actions and counterfactual values.

@ CFR removes iterative strictly-dominated actions.

@ 2-player game: If R /T < ¢, converges to 2(e + ¢,)-Nash.

Hyperborean: winner of 2012, 2013, and 2014 3-player competitions.
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Sequence-Form Replicator Dynamics

Refs: [Gatti et al. *13][Lanctot '14]

Recall O set of choices (1,a), and x;(q) realization weight on ¢:

For player i, for each ¢ € Q;, update:

wi(Xi s g,)
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Sequence-Form Replicator Dynamics

Refs: [Gatti et al. *13][Lanctot '14]

Recall O set of choices (1,a), and x;(q) realization weight on ¢:

For player i, for each ¢ € Q;, update:
_________ - Xisg, 18X

mi(g.t 1) = (g )2 except player i
e uses gg(x;)
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Sequence-Form Replicator Dynamics

Refs: [Gatti et al. *13][Lanctot '14]

Recall O set of choices (1,a), and x;(q) realization weight on ¢:

For player i, for each ¢ € Q;, update:

Xisg, 18 X

zi(q,t+1) = xi(q7t):.u.1(xl*>9q ),ff:. except player ¢

TeLuses gq(x;)

1 if ¢ € Xi(q),

9q(%i,q) = A#ﬂm,) if Xi(q) € Xi(q),
0 otherwise,
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Sequence-Form Replicator Dynamics

Refs: [Gatti et al. *13][Lanctot '14]

For player i, for each ¢ € Q;, update:

- Xig, 18X

zi(g,t+1) = :Ei(q7t)‘.u.1(xz*>9q ),fff:‘ except player ¢

T uses gy(xi)

1 if ¢ € Xi(q),
9q(Xi,q") = Aﬁﬁw) if Xi(q) E Xi(q),
0 otherwise,

@ g,(x;) is a “projection”: i plays g if possible, else plays x;
@ Implements a form of counteractual regret minimization
@ In 3-player Kuhn poker, finds "best” equilibrium!
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CFR-BR

Refs: [Johanson et al. *11][Johanson et al. *12]

CFR
o A/ 0/

Both players abstracted: Opponent is Unabstracted:
Suboptimal strategy, Optimal abstract strategy,
Low memory requirements High memory requirements

CFR-BR

(C)A\VSA (d%\"s BR

Opponent is Best Response: Opponent is Hybrid:
Optimal abstract strategy, Optimal abstract strategy,
High computation requirements Low memory and
computation requirements

@ Minimize regret against a best responder

@ Best responder uses full unabstracted space

@ Use accelerated algorithms for computing best response
@ Used in diabetes patient simulation [Chen & Bowling *12]

23/29



CFR+

Refs: [Tammelin et al. "11]

Regret matching plus (RM™ ): never accumulate negative regret!
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Refs: [Tammelin et al. "11]
Regret matching plus (RM™ ): never accumulate negative regret!

Theorem 1: T steps: RM™ has external regret A,\/|A|T.
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CFR+

Refs: [Tammelin et al. "11]
Regret matching plus (RM™ ): never accumulate negative regret!
Theorem 1: T steps: RM™ has external regret A,\/|A|T.

Tracking regret [Herbster & Warmuth '98]: hindsight strategy can change
(k— 1) times.

Theorem 2: T step: RM™ has tracking regret kA, +/|A|T.
Theorem 3: T step: CFR™ has regret O(|Z;| + |Z2|)/|A|T.
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Solving 2-player HULHE

Refs: [Bowling et al. '15]
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Solving 2-player HULHE

Refs: [Bowling et al. '15]
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Solving 2-player HULHE

Refs: [Bowling et al. '15]

Suited Suited
AKQ ) T9 8765432 AKQ ) T9 8765432

A A
K K
Q Q
J J
T T

T Z9

S EE

57 57
6 6
5 5
4 4
3 3
2 2

(a) first action as the dealer (b) first action as the non-dealer after a
dealer raise

Legend: fold raise call
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Open Problem #1: Stronger-than-Nash?

Can a new variant of CFR converge to a:
@ Sequential equilibrium?
@ Trembling-hand perfect equilibrium?
@ Strong equilibrium?
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Open Problem #2: Correlated Equilibrium?

Does/can CFR converge to an (extensive-form) correlated equilibrium?
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Other work

FSICFR (chance-sampling variant) [Neller & Hnath '11]

CFR with decomposition [Burch et al. *12][Jackson ’14]

Regret transfer [Brown and Sandholm *14]

Regret-based Pruning [Brown and Sandholm *14]

Automated abstraction and solving [Brown and Sandholm *15]
Warm starting CFR [Brown and Sandholm ’16]

Online search [Lisy, Lanctot, and Bowling ’15][Heinrich & Silver '15]
Relationship to optimization [Waugh and Bagnell '15]
Fictitious Self-play [Heinrich, Lanctot, and Silver ’15]
End-to-end learning [Waugh et al. *15][Heinrich and Silver ’16]
Application to security domains [Lisy, Davis, and Bowling *16]
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Thanks, Questions, Info

Thank you for listening! Any questions?

Part 1: Sam Ganzfried
sam.ganzfried@gmail.com
http://www.ganzfriedresearch.com

Part 2: Marc Lanctot
marc.lanctot@gmail.com
http://mlanctot.info
http://mlanctot.info/ecpokertutorial2016
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