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Outline

Optimization using the sequence form
Counterfactual Regret (CFR) Minimization
Selected CFR extensions
Solving 2-player Heads-up Limit Texas Hold’em
Two open problems

Slides and references available at:
http://mlanctot.info/ecpokertutorial2016/
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Extensive-form Games

Player 1 sees J♠J♥

Player 2 bets

Player 1 bets

Player 1 calls

...

� payoffs received �

Information set I,

represents state of game

from player 1’s perspective

A choice, q = (I, a)

is an action a ∈ A(I)

taken from a specific I

Information sets: I ∈ I, (context-specific) choices q = (I, a) ∈ Q.
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Defaults

Unless otherwise noted, assume:

Notation based on [Osborne & Rubinstein ’94]

Perfect recall
Mixed (randomized) strategies are used σ
Two players: N = 2

I subscript i refers to a player i
I subscript −i refers to the opponent(s) of player i

Zero-sum: for every game outcome z,
∑N

i=1 ui(z) = 0
I Set of Nash eq. profiles {σ∗} ⇔ set of minimax profiles
I Expected values for eq. ui(σ

∗) are unique
I Nash strategies for player i are interchangeable:

ui(σ
∗
i,1, σ

∗
−i) = ui(σ

∗
i,2, σ

∗
−i)
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Sequence-Form Representation

Refs: [Koller, Megiddo, von Stengel ’94][von Stengel ’07]

Let Qi = {(I, a) | I ∈ I, a ∈ A(I)} be the set of choices for player i.
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Sequence-Form Representation

Refs: [Koller, Megiddo, von Stengel ’94][von Stengel ’07]

Let Qi = {(I, a) | I ∈ I, a ∈ A(I)} be the set of choices for player i.

Encode realization plan for player i using constraints; ∆Q := all x such
that

xi(q∅) = 1

xi(q) =
∑

q′∈succi(q) xi(q′)
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Sequence-Form Representation

Refs: [Koller, Megiddo, von Stengel ’94][von Stengel ’07]

Let Qi = {(I, a) | I ∈ I, a ∈ A(I)} be the set of choices for player i.

Encode realization plan for player i using constraints; ∆Q := all x such
that

xi(q∅) = 1
xi(q) =

∑
q′∈succi(q) xi(q′)

q∅ = 1

q1 = (I1, a1) ...q2 = (I1, a2) q3 = (I1, a3) q4 = (I2, a1)

... ... ... ...

⇒ Much more space-efficient than mixture over pure strategies! 5 / 29



Sequence-Form Linear Programming

For two-player zero-sum, setup an optimization problem:

max
x∈∆Q1

min
y∈∆Q2

xAy = min
y∈∆Q2

max
x∈∆Q1

xAy,

Subject to Ex = e, x ≥ 0, x · 1 = 1.
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Here:

A has an entry for every q1 and q2 that result in terminal states.
E encodes the structure of Qi
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For two-player zero-sum, setup an optimization problem:

max
x∈∆Q1

min
y∈∆Q2

xAy = min
y∈∆Q2

max
x∈∆Q1

xAy,

Subject to Ex = e, x ≥ 0, x · 1 = 1.

Here:

A has an entry for every q1 and q2 that result in terminal states.
E encodes the structure of Qi

e is (1, 0, 0, 0, ...)T

Storing A requires O(|Q1||Q2|) space in the worst case.

For large games, in practice, A is sparse and so memory requirements
are closer to |Q1|+ |Q2|.
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Double-Oracle Methods

Refs: [Zinkevich et al. ’06][Bosansky et. al ’14]

In extensive-form:
Each row/column corresponds to a realization plan
Heuristics to compute ”good” best responses
Could still require enumerating entire space
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Nesterov’s Excessive Gap Technique (EGT)

Refs: [Gilpin et al. ’07][Hoda et al. ’10]

Recall:
max

x∈∆Q1
f (y) = min

y∈∆Q2
φ(x),

where f (y) = miny∈∆Q2 z, φ(x) = maxx∈∆Q1 z, z = xAy.

Use a strongly convex function di on ∆Qi, and define:

fµ2(y) = min
y∈Q2
{z + µ2d2(y)}

φµ1(x) = max
x∈Q1
{z− µ1d1(x)}

Then fµ2(y) ≥ φµ1(x) ⇒ 0 ≤ φ(y)− f (x) ≤ µ1d>1 + µ2d>2 , so
iteratively compute (xk, yk, µk

1, µ
k
2) such that µk+1

i < µk
i by gradient

descent.

Theorem: EGT computes an ε-equlibrium in O(1/ε) iterations.
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Counterfactual Regret Minimization (CFR)

CFR [Zinkevich et al. 2008] is iterative strategy-updating algorithm:

t = 1

t = 2 t = 3 · · ·

Player 1 strategies: σ1
1

→ σ2
1 → σ3

1 · · ·

Player 2 strategies: σ1
2

→ σ2
2 → σ3

2 · · ·

Let RT
i be the external regret of using σt after T steps:

RT
i = max

a∈A
E

[
T∑

t=1

(
ui(a, σt

−i)− ui(σ
t
i , σ

t
−i)
)
]

RT
i /T ≤ ε ⇒ the average profile (σ̄T

1 , σ̄
T
2 ) is a 2ε-Nash.

σ is ε-Nash if a player can do ε better by switching to σ′i .
σ is Nash if no player can do better by switching strategies.
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Terminology I : Extensive-Form Games

An extensive-form game is
represented in tree form.

h ∈ H is possible history;
z ∈ Z,Z ⊆ H is a terminal history.

An information set Ii ∈ I is an
information set for player i.

A(Ii) is the action set for i at
information set Ii.

Example:

*

−1 +3

+1 +2 −2 +1

+1 −1

c c
1 2

a b a b

c d
c d

fe e f

P1

Chance

P2
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represented in tree form.

h ∈ H is possible history;
z ∈ Z,Z ⊆ H is a terminal history.

An information set Ii ∈ I is an
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information set Ii.

Example:

*

−1 +3
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+1 −1

c c
1 2

c d
c d

fe e f
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I2

I1
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Terminology II : Strategies

A strategy σi ∈ Σi is a distribution
from Ii → A(Ii).

A strategy σ−i is a strategy for
the opponents of i and chance.

A strategy profile σ = (σ1, σ2).

ui(z) is the payoff to player i
when players play z.

πσ(h) is a product of
probabilities along history h.
πσi (h) is player i’s contribution.

*

−1 +3

+1 +2 −2 +1

+1 −1

c c
1 2

P1

Chance

P2

I’2

I2

I1

d=.8c=.2 c=.2 d=.8

e=.1
f=.9e=.1

f=.9
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CFR Algorithm (Overview)

Refs: [Zinkevich et al. ’08][Hart & Mas-Colell ’00]

1. Minimize average immediate counterfactual regret RT
i,imm(I)

2. Theorem 3: Overall regret bounded by

RT
i /T ≤

∑

I∈Ii

RT,+
i,imm(I)

3. Theorem 4: Using regret-matching to update strategies, σt at each
information set, then

RT
i /T ≤ ∆u,i|Ii|

√
|Ai|√

T

where ∆u,i is a payoff range for i.
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CFR Algorithm (Example)

Define counterfactual value as

vi(σ, I) =
∑

h∈I,z∈Z

πσ−i(h)πσ(h, z)ui(z)

Define vi(σ(I→a), I) similarly, except take a at I

Repeat until sufficiently small ε:

1 Walk the game tree computing
r(I, a) = vi(σ(I→a), I)− vi(σ, I)

1 Recursively compute r(I, a)
at a particular node

2 Add to accumulated values
r[I, a] += r(I, a)

2 σt+1
i (I)← RegretMatching(r[I])

3 Update average profile σ̄
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CFR Extension Outline

Many (20+ !) follow-up papers on CFR.

I will cover a subset:
Restricted Nash Responses
Monte Carlo CFR
Imperfect Recall Abstraction
Multiplayer and non-zero-sum
Sequence-Form Replicator Dynamics
CFR-BR
CFR+
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Restricted Nash Responses

Refs: [Johanson and Bowling ’08, ’09][Ponsen et al. ’12]

Game G is some game.
GR is a restricted copy (e.g. player −i plays σfixed)
Nashi(G′)⇔ best trade-off between Nashi(G) and BRi(σfixed)
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Monte Carlo CFR

Refs: [Lanctot et. al ’09], [Gibson et al. ’12], [Johanson et al. ’12], [Burch et al. ’12]

Sample parts of the tree: sampled counterfactual values ṽi(σ, I).

Unbiased estimator: E[ṽi(σ, I)] = vi(σ, I).

Outcome sampling

Theorem: with probability 1− p, δ is i’s min prob sampling z

RT
i /T ≤

(
Mi(σ

∗
i )
√
|max

I
A(I)|+

√
2|Ii||Bi|√

p

)(
1
δ

)(
∆u,i√

T

)

E.g. chance sampling→ sample only chance outcomes
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Monte Carlo CFR: External Sampling

Refs: [Lanctot et. al ’09][Gibson ’14]

.

.

.

.

.

.

.

.

.

.

.

.

my node

my node

opp. node

opp. node

Eg. for player 1

Theorem: with prob 1− p:

RT
i /T ≤

(
Mi(σ

∗
i )
√
|max

I
A(I)|+

√
2|Ii||Bi|√

p

)(
∆u,i√

T

)

Has worked well in (> 2)-player and large action spaces
Tartanian7, 2014 winner of 2P NL, used variant of ext. sampling
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Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al ’11][Jackson ’12]

Sample only public chance events!
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Monte Carlo CFR: Public Chance Sampling

Refs: [Johanson et. al ’11][Jackson ’12]

Sample only public chance events!

Vectorize the tree walk (one element per opponent private card)

Same bound as E.S. but can use equiv. classes at leaf nodes!

Liar’s Dice (2,2)

Slumbot, 2012 winner of HULHE, used PCS
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Generalized Monte Carlo CFR

Refs: [Gibson et al. ’12]

Given any estimator for counterfactual values v̂(I, a) with bounded
range ∆̂:

Theorem: with prob 1− p,

RT
i /T ≤ |Ii|


∆̂i

√
maxI |A(I)|√

T
+

√
Var
pT

+
Cov

p
+

E2

p


 ,

where:
Var is max variance of diff in regret and est. regret at t,
Cov is max covariance of diff in regret and est. regret at t, t′,
E is the max expectation of diff in regret and est. regret (bias) at t,

over all time steps t (and t′), info sets I, actions a ∈ A(I).
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Imperfect Recall Abstraction

Refs: [Waugh et al. ’09][Lanctot et al. ’12][Kroer & Sandholm ’14, ’16]

History h ∈ Ĭ, define Xi(h) = (̆I1, a1), (Ĭ2, a2), · · · as player i’s choice
sequence for all Ik belonging to i in h.
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20 / 29



Imperfect Recall Abstraction

Refs: [Waugh et al. ’09][Lanctot et al. ’12][Kroer & Sandholm ’14, ’16]
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Not every h ∈ Ĭ is necessarily relevant for computing approx. σ(Ĭ)!!

Purposely forget parts of h ∈ Ĭ and h′ ∈ Ĭ′;→ merge I = Ĭ ∪ Ĭ′.
Benefits:

1 Huge savings in memory

2 Often clear what should be forgotten
3 CFR algorithm still runs(!)

I But does it still work/converge?
I In theory: yes! Under some (somewhat restrictive) assumptions.
I In practice: yes, very well!
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sequence for all Ik belonging to i in h.

Perfect recall: for all h, h′ ∈ Ĭ ⇔ Xi(h) = X(h′)
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Purposely forget parts of h ∈ Ĭ and h′ ∈ Ĭ′;→ merge I = Ĭ ∪ Ĭ′.
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Multi (> 2) player and non-zero sum

Refs: [Abou Risk & Szafron ’10][Gibson & Szafron ’11][Gibson et al. ’13][Gibson ’14]

Generally not much known about CFR in this case.

But here again, algorithm is still well-defined.

Gibson 2014:
Regret min. removes iteratively strictly-dominated strategies.
Extend to dominated actions and counterfactual values.
CFR removes iterative strictly-dominated actions.
2-player game: If RT

i /T < ε, converges to 2(ε+ δu)-Nash.

Hyperborean: winner of 2012, 2013, and 2014 3-player competitions.
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Sequence-Form Replicator Dynamics

Refs: [Gatti et al. ’13][Lanctot ’14]

Recall Q set of choices (I, a), and xi(q) realization weight on q:

xi(q, t+ 1) = xi(q, t)
ui(xi→gq )

ui(x)

For player i, for each q ∈ Qi, update:
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Recall Q set of choices (I, a), and xi(q) realization weight on q:

xi(q, t+ 1) = xi(q, t)
ui(xi→gq )

ui(x)

For player i, for each q ∈ Qi, update:

xi→gq is x

except player i

uses gq(xi)

gq(xi, q
′) =





1 if q′ ∈ Xi(q),
xi(q

′)
Ancestor(q,q′) if Xi(q) v Xi(q

′),

0 otherwise,
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Sequence-Form Replicator Dynamics

Refs: [Gatti et al. ’13][Lanctot ’14]

xi(q, t+ 1) = xi(q, t)
ui(xi→gq )

ui(x)

For player i, for each q ∈ Qi, update:

xi→gq is x

except player i

uses gq(xi)

gq(xi, q
′) =





1 if q′ ∈ Xi(q),
xi(q

′)
Ancestor(q,q′) if Xi(q) v Xi(q

′),

0 otherwise,

gq(xi) is a “projection”: i plays q if possible, else plays xi

Implements a form of counteractual regret minimization
In 3-player Kuhn poker, finds ”best” equilibrium!
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CFR-BR

Refs: [Johanson et al. ’11][Johanson et al. ’12]

Minimize regret against a best responder
Best responder uses full unabstracted space
Use accelerated algorithms for computing best response
Used in diabetes patient simulation [Chen & Bowling ’12]
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CFR+

Refs: [Tammelin et al. ’11]

Regret matching plus (RM+ ): never accumulate negative regret!
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CFR+

Refs: [Tammelin et al. ’11]

Regret matching plus (RM+ ): never accumulate negative regret!

Theorem 1: T steps: RM+ has external regret ∆u
√
|A|T.

Tracking regret [Herbster & Warmuth ’98]: hindsight strategy can change
(k − 1) times.

Theorem 2: T step: RM+ has tracking regret k∆u
√
|A|T.

Theorem 3: T step: CFR+ has regret O(|I1|+ |I2|)
√
|A|T.
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Solving 2-player HULHE

Refs: [Bowling et al. ’15]
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Solving 2-player HULHE

Refs: [Bowling et al. ’15]

Legend: fold raise call
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Open Problem #1: Stronger-than-Nash?

Can a new variant of CFR converge to a:

Sequential equilibrium?
Trembling-hand perfect equilibrium?
Strong equilibrium?
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Open Problem #2: Correlated Equilibrium?

Does/can CFR converge to an (extensive-form) correlated equilibrium?
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Other work

FSICFR (chance-sampling variant) [Neller & Hnath ’11]

CFR with decomposition [Burch et al. ’12][Jackson ’14]

Regret transfer [Brown and Sandholm ’14]

Regret-based Pruning [Brown and Sandholm ’14]

Automated abstraction and solving [Brown and Sandholm ’15]

Warm starting CFR [Brown and Sandholm ’16]

Online search [Lisý, Lanctot, and Bowling ’15][Heinrich & Silver ’15]

Relationship to optimization [Waugh and Bagnell ’15]

Fictitious Self-play [Heinrich, Lanctot, and Silver ’15]

End-to-end learning [Waugh et al. ’15][Heinrich and Silver ’16]

Application to security domains [Lisy, Davis, and Bowling ’16]

...
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Thanks, Questions, Info

Thank you for listening! Any questions?

Part 1: Sam Ganzfried
sam.ganzfried@gmail.com
http://www.ganzfriedresearch.com

Part 2: Marc Lanctot
marc.lanctot@gmail.com
http://mlanctot.info
http://mlanctot.info/ecpokertutorial2016
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