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Abstract

In large extensive form games with imperfect information,
Counterfactual Regret Minimization (CFR) is a popular, it-
erative algorithm for computing approximate Nash equilib-
ria. While the base algorithm performs a full tree traversal
on each iteration, Monte Carlo CFR (MCCFR) reduces the
per iteration time cost by traversing just a sampled portion of
the tree. On the other hand, MCCFR’s sampled values intro-
duce variance, and the effects of this variance were previously
unknown. In this paper, we generalize MCCFR by consider-
ing any generic estimator of the sought values. We show that
any choice of an estimator can be used to probabilistically
minimize regret, provided the estimator is bounded and un-
biased. In addition, we relate the variance of the estimator
to the convergence rate of an algorithm that calculates regret
directly from the estimator. We demonstrate the application
of our analysis by defining a new bounded, unbiased estima-
tor with empirically lower variance than MCCFR estimates.
Finally, we use this estimator in a new sampling algorithm
to compute approximate equilibria in Goofspiel, Bluff, and
Texas hold’em poker. Under each of our selected sampling
schemes, our new algorithm converges faster than MCCFR.

Introduction
An extensive form game is a common formalism used
to model sequential decision making problems. Extensive
games provide a versatile framework capable of represent-
ing multiple agents, imperfect information, and stochastic
events. Counterfactual Regret Minimization (CFR) (Zinke-
vich et al. 2008) is an algorithm capable of finding effec-
tive strategies in a variety of games. In 2-player zero-sum
games with perfect recall, CFR converges to an approxi-
mate Nash equilibrium profile. Other techniques for com-
puting Nash equilibria include linear programming (Koller,
Megiddo, and von Stengel 1994) and the Excessive Gap
Technique (Hoda et al. 2010).

CFR is an iterative algorithm that updates every player’s
strategy through a full game tree traversal on each iteration.
Theoretical results indicate that for a fixed solution quality,
the procedure takes a number of iterations at most quadratic
in the size of the game (Zinkevich et al. 2008, Theorem 4).
As we consider larger games, however, traversals become
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more time consuming, and thus more time is required to con-
verge to an equilibrium.

Monte Carlo CFR (MCCFR) (Lanctot et al. 2009a) can
be used to reduce the traversal time per iteration by consid-
ering only a sampled portion of the game tree at each step.
Compared to CFR, MCCFR can update strategies faster and
lead to less overall computation time. However, the strategy
updates are noisy because any action that is not sampled is
assumed to provide zero counterfactual value to the strategy.
When a non-sampled action provides large value, MCCFR
introduces a lot of variance. Previous work does not discuss
how this variance affects the convergence rate.

Our main contributions in this paper result from a more
general analysis of the effects of using sampled values in
CFR updates. We show that any bounded, unbiased esti-
mates of the true counterfactual values can be used to min-
imize regret, whether the estimates are derived from MC-
CFR or not. Furthermore, we prove a new upper bound on
the average regret in terms of the variance of the estimates,
suggesting that estimates with lower variance are preferred.
In addition to these main results, we introduce a new CFR
sampling algorithm that lives outside of the MCCFR fam-
ily of algorithms. By “probing” the value of non-sampled
actions, our new algorithm demonstrates one way of reduc-
ing the variance in the updates to provide faster convergence
to equilibrium. This is shown in three domains: Goofspiel,
Bluff, and Texas hold’em poker.

Background
A finite extensive game contains a game tree with nodes
corresponding to histories of actions h ∈ H and edges
corresponding to actions a ∈ A(h) available to player
P (h) ∈ N∪{c} (whereN is the set of players and c denotes
chance). When P (h) = c, σc(h, a) is the (fixed) probabil-
ity of chance generating action a at h. We call h a prefix of
history h′, written h v h′, if h′ begins with the sequence
h. Each terminal history z ∈ Z has associated utilities
ui(z) for each player i. In imperfect information games,
non-terminal histories are partitioned into information sets
I ∈ Ii representing the different game states that player i
cannot distinguish between. For example, in poker, player
i does not see the private cards dealt to the opponents, and
thus all histories differing only in the private cards of the op-
ponents are in the same information set for player i. The ac-



tion setsA(h) must be identical for all h ∈ I , and we denote
this set by A(I). We assume perfect recall that guarantees
players always remember information that was revealed to
them and the order in which it was revealed.

A strategy for player i, σi ∈ Σi, is a function that
maps each information set I ∈ Ii to a probability distri-
bution overA(I). A strategy profile is a vector of strategies
σ = (σ1, ..., σ|N |) ∈ Σ, one for each player. Define ui(σ)
to be the expected utility for player i, given that all players
play according to σ. We let σ−i refer to the strategies in σ
excluding σi.

Let πσ(h) be the probability of history h occurring if all
players choose actions according to σ. We can decompose

πσ(h) =
∏

i∈N∪{c}

πσi (h)

into each player’s and chance’s contribution to this probabil-
ity. Here, πσi (h) is the contribution to this probability from
player i when playing according to σi. Let πσ−i(h) be the
product of all players’ contribution (including chance) ex-
cept that of player i. Furthermore, let πσ(h, h′) be the prob-
ability of history h′ occurring after h, given h has occurred.
Let πσi (h, h′) and πσ−i(h, h

′) be defined similarly.
A best response to σ−i is a strategy that maximizes

player i’s expected payoff against σ−i. The best response
value for player i is the value of that strategy, bi(σ−i) =
maxσ′

i∈Σi
ui(σ

′
i, σ−i). A strategy profile σ is an ε-Nash

equilibrium if no player can unilaterally deviate from σ and
gain more than ε; i.e., ui(σ) + ε ≥ bi(σ−i) for all i ∈ N .

In this paper, we will focus on two-player zero-sum
games: N = {1, 2} and u1(z) = −u2(z) for all z ∈ Z.
In this case, the exploitability of σ, e(σ) = (b1(σ2) +
b2(σ1))/2, measures how much σ loses to a worst case op-
ponent when players alternate positions. A 0-Nash equilib-
rium (or simply a Nash equilibrium) has zero exploitability.

Counterfactual Regret Minimization (CFR) is an itera-
tive procedure that, for two-player zero-sum games, obtains
an ε-Nash equilibrium in O(|H||Ii|/ε2) time (Zinkevich et
al. 2008, Theorem 4). On each iteration t, CFR (or “vanilla
CFR”) recursively traverses the entire game tree, calculat-
ing the expected utility for player i at each information set
I ∈ Ii under the current profile σt, assuming player i plays
to reach I . This expectation is the counterfactual value for
player i,

vi(σ, I) =
∑
z∈ZI

ui(z)π
σ
−i(z[I])πσ(z[I], z),

where ZI is the set of terminal histories passing through
I and z[I] is the prefix of z contained in I . For each ac-
tion a ∈ A(I), these values determine the counterfactual
regret at iteration t, rti(I, a) = vi(σ

t
(I→a), I) − vi(σ

t, I),
where σ(I→a) is the profile σ except at I , action a is always
taken. This process is shown visually in Figure 1a. The re-
gret rti(I, a) measures how much player i would rather play
action a at I than play σt. The counterfactual regrets

RTi (I, a) =

T∑
t=1

rti(I, a)

I
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(b)

I

v̂ i(σ(I →a1)
, I ) v̂ i(σ(I →a3)

, I )= probei (σ(I →a 3)
, I )

a1
a2

a3

v̂ i(σ(I →a2 )
, I )= probe i(σ(I →a 2)

, I )

r̂ i ( I , a)=v̂ i(σ( I →a ) , I )−∑
b

σ ( I , b) v̂ i(σ( I →b ) , I )

∑
b

σ ( I , b) v̂i (σ(I →b) , I )

(c)

Figure 1: (a) The computed values at information set I dur-
ing vanilla CFR. First, for each action, the counterfactual
values are recursively computed. The counterfactual regrets
are then computed before returning the counterfactual value
at I to the parent. (b) The computed values at I during out-
come sampling. Here, only action a1 is sampled and its sam-
pled counterfactual value is recursively computed. The re-
maining two actions are effectively assigned zero sampled
counterfactual value. The sampled counterfactual regrets are
then computed before returning the sampled counterfactual
value at I to the parent. (c) An example of computed values
at I during our new sampling algorithm. In this example,
again only a1 is sampled and its estimated counterfactual
value is recursively computed. The remaining two actions
are “probed” to improve both the estimated counterfactual
regrets and the returned estimated counterfactual value at I .

are accumulated and σt is updated by applying regret match-
ing (Hart and Mas-Colell 2000; Zinkevich et al. 2008) to the



accumulated regrets,

σT+1(I, a) =
RT,+i (I, a)∑

b∈A(I)

RT,+i (I, b)
(1)

where x+ = max{x, 0} and actions are chosen uniformly at
random when the denominator is zero. This procedure mini-
mizes the average of the counterfactual regrets, which in turn
minimizes the average (external) regretRT

i /T (Zinkevich
et al. 2008, Theorem 3), where

RTi = max
σ′∈Σi

T∑
t=1

(
ui(σ

′, σt−i)− ui(σti , σt−i)
)
.

It is well known that in a two-player zero-sum game, if
RTi /T < ε for i ∈ {1, 2}, then the average profile σ̄T is
a 2ε-Nash equilibrium.

For large games, CFR’s full game tree traversal can be
very expensive. Alternatively, one can still obtain an approx-
imate equilibrium by traversing a smaller, sampled portion
of the tree on each iteration using Monte Carlo CFR (MC-
CFR) (Lanctot et al. 2009a). Let Q be a set of subsets, or
blocks, of the terminal histories Z such that the union of Q
spans Z. On each iteration, a block Q ∈ Q is sampled ac-
cording to a probability distribution overQ. Outcome sam-
pling is an example of MCCFR that uses blocks containing
a single terminal history (Q = {z}). On each iteration of
outcome sampling, the block is chosen during traversal by
sampling a single action at the current decision point until
a terminal history is reached. The sampled counterfactual
value for player i,

ṽi(σ, I) =
∑

z∈ZI∩Q
ui(z)π

σ
−i(z[I])πσ(z[I], z)/q(z)

where q(z) is the probability that z was sampled, defines the
sampled counterfactual regret on iteration t for action a at
I , r̃ti(I, a) = ṽi(σ

t
(I→a), I) − ṽi(σt, I). The sampled coun-

terfactual values are unbiased estimates of the true counter-
factual values (Lanctot et al. 2009a, Lemma 1). In outcome
sampling, for example, only the regrets along the sampled
terminal history are computed (all others are zero by defi-
nition). Outcome sampling converges to equilibrium faster
than vanilla CFR in a number of different games (Lanctot et
al. 2009a, Figure 1).

As we sample fewer actions at a given node, the sampled
counterfactual value is potentially less accurate. Figure 1b il-
lustrates this point in the case of outcome sampling. Here, an
“informative” sampled counterfactual value for just a single
action is obtained at each information set along the sampled
block (history). All other actions are assigned a sampled
counterfactual value of zero. While EQ[ṽi(σ, I)] = vi(σ, I),
variance is introduced, affecting both the regret updates and
the value recursed back to the parent. As we will see in
the next section, this variance plays an important role in the
number of iterations required to converge.

Generalized Sampling
Our main contributions in this paper are new theoretical find-
ings that generalize those of MCCFR. We begin by pre-

senting a previously established bound on the average re-
gret achieved through MCCFR. Let |Ai| = maxI∈Ii |A(I)|
and suppose δ > 0 satisfies the following: ∀z ∈ Z ei-
ther πσ−i(z) = 0 or q(z) ≥ δ > 0 at every iteration.
We can then bound the difference between any two sam-
ples ṽi(σ(I→a), I) − ṽi(σ(I→b), I) ≤ ∆̃i = ∆i/δ, where
∆i = maxz∈Z ui(z) − minz∈Z ui(z). The average regret
can then be bounded as follows:

Theorem 1 (Lanctot et al. (2009a), Theorem 5) Let p ∈
(0, 1]. When using outcome-sampling MCCFR, with prob-
ability 1− p, average regret is bounded by

RTi
T
≤

(
∆̃i +

√
2∆̃i√
p

)
|Ii|
√
|Ai|√
T

. (2)

A related bound holds for all MCCFR instances (Lanctot
et al. 2009b, Theorem 7). We note here that Lanctot et
al. present a slightly tighter bound than equation (2) where
|Ii| is replaced with a game-dependent constant Mi that is
independent of the sampling scheme and satisfies

√
|Ii| ≤

Mi ≤ |Ii|. This constant is somewhat complicated to define,
and thus we omit these details here. Recall that minimizing
the average regret yields an approximate Nash equilibrium.
Theorem 1 suggests that the rate at which regret is mini-
mized depends on the bound ∆̃i on the difference between
two sampled counterfactual values.

We now present a new, generalized bound on the aver-
age regret. While MCCFR provides an explicit form for the
sampled counterfactual values ṽi(σ, I), we let v̂i(σ, I) de-
note any estimator of the true counterfactual value vi(σ, I).
We can then define the estimated counterfactual regret on
iteration t for action a at I to be r̂ti(I, a) = v̂i(σ

t
(I→a), I)−

v̂i(σ
t, I). This generalization creates many possibilities not

considered in MCCFR. For instance, instead of sampling a
blockQ of terminal histories, one can consider a sampled set
of information sets and only update regrets at those sampled
locations. Another example is provided later in the paper.

The following lemma probabilistically bounds the aver-
age regret in terms of the variance, covariance, and bias be-
tween the estimated and true counterfactual regrets:

Lemma 1 Let p ∈ (0, 1] and suppose that there exists
a bound ∆̂i on the difference between any two estimates,
v̂i(σ(I→a), I) − v̂i(σ(I→b), I) ≤ ∆̂i. If strategies are se-
lected according to regret matching on the estimated coun-
terfactual regrets, then with probability at least 1 − p, the
average regret is bounded by

RTi
T
≤ |Ii|

√
|Ai|

 ∆̂i√
T

+

√
Var
pT

+
Cov
p

+
E2

p


where

Var = max
t∈{1,...,T}
I∈Ii
a∈A(I)

Var
[
rti(I, a)− r̂ti(I, a)

]
,

with Cov and E similarly defined.



The proof is similar to that of Theorem 7 by Lanctot et
al. (2009b) and can be found, along with all other proofs,
in the technical report (Gibson et al. 2012). Lemma 1 im-
plies that unbiased estimators of vi(σ, I) give a probabilistic
guarantee of minimizing RTi /T :

Theorem 2 If in addition to the conditions of Lemma 1,
v̂i(σ, I) is an unbiased estimator of vi(σ, I), then with prob-
ability at least 1− p,

RTi
T
≤

(
∆̂i +

√
Var
√
p

)
|Ii|
√
Ai√
T

. (3)

Theorem 2 shows that the bound on the difference between
two estimates, ∆̂i, plays a role in bounding the average over-
all regret. This is not surprising as ∆̃i plays a similar role
in Theorem 1. However, Theorem 2 provides new insight
into the role played by the variance of the estimator. Given
two unbiased estimators v̂i(σ, I) and v̂′i(σ, I) with a com-
mon bound ∆̂i but differing variance, using the estimator
with lower variance will yield a smaller bound on the av-
erage regret after T iterations. For a fixed ε > 0, this sug-
gests that estimators with lower variance will require fewer
iterations to converge to an ε-Nash equilibrium. In addition,
since in MCCFR we can bound

√
Var ≤

√
2 max{∆̃i,∆i},

equation (3) is more informative than equation (2). Further-
more, if some structure on the estimates v̂i(σ, I) holds, we
can produce a tighter bound than equation (3) by incorporat-
ing the game-dependent constant Mi introduced by Lanctot
et al. (2009a). Details of this improvement are included in
the technical report (Gibson et al. 2012).

While unbiased estimators with lower variance may re-
duce the number of iterations required, we must define these
estimators carefully. If the estimator is expensive to com-
pute, the time per iteration will be costly and overall compu-
tation time may even increase. For example, the true coun-
terfactual value vi(σ, I) has zero variance, but computing
the value with vanilla CFR is too time consuming in large
games. In the next section, we present a new bounded, unbi-
ased estimator that exhibits lower variance than ṽi(σ, I) and
can be computed nearly as fast.

A New CFR Sampling Algorithm
We now provide an example of how our new theoretical find-
ings can be leveraged to reduce the computation time re-
quired to obtain an ε-Nash equilibrium. Our example is an
extension of MCCFR that attempts to reduce variance by re-
placing “zeroed-out” counterfactual values of player i’s non-
sampled actions with closer estimates of the true counter-
factual values. Figure 1c illustrates this idea. The simplest
instance of our new algorithm “probes” each non-sampled
action a at I for its counterfactual value. A probe is a sin-
gle Monte Carlo roll-out, starting with action a at I and se-
lecting subsequent actions according to the current strategy
σt until a terminal history z is reached. By rolling out ac-
tions according to the current strategy, a probe is guaranteed
to provide an unbiased estimate of the counterfactual value
for a at I . In general, one can perform multiple probes per
non-sampled action, probe only a subset of the non-sampled

actions, probe off-policy, or factor in multiple terminal his-
tories per probe. While the technical report touches on this
generalization (Gibson et al. 2012), our presentation here
sticks to the simple, inexpensive case of one on-policy, sin-
gle trajectory probe for each non-sampled action.

We now formally define the estimated counterfactual
value v̂i(σ, I) obtained via probing, followed by a descrip-
tion of a new CFR sampling algorithm that updates regrets
according to these estimates. Similar to MCCFR, let Q be
a set of blocks spanning Z from which we sample a block
Q ∈ Q for player i on every iteration. To further simplify
our discussion, we will assume from here on that each Q
samples a single action at every history h not belonging to
player i, sampled according to the known chance probabili-
ties σc or the opponent’s current strategy σ−i. Additionally,
we assume that the set of actions sampled at I ∈ Ii, denoted
Q(I), is nonempty and independent of every other set of ac-
tions sampled. While probing can be generalized to work
for any choice of Q (Gibson et al. 2012), this simplification
reduces the number of probabilities to compute in our algo-
rithm and worked well in preliminary experiments. Once Q
has been sampled, we form an additional set of terminal his-
tories, or probes, B ⊆ Z\Q, generated as follows. For each
non-terminal history h with P (h) = i reached and each ac-
tion a ∈ A(h) that Q does not sample (i.e., ∃z ∈ Q such
that h v z, but ∀z ∈ Q, ha 6v z), we generate exactly one
terminal history z = zha ∈ B, where z ∈ Z\Q is selected
on-policy (i.e., with probability πσ(ha, z)). In other words,
each non-sampled action is probed according to the current
strategy profile σ and the known chance probabilities. Recall
thatZI is the set of terminal histories that have a prefix in the
information set I . Given both Q and B, when ZI ∩ Q 6= ∅,
our estimated counterfactual value is defined to be

v̂i(σ, I) =
1

qi(I)

 ∑
z∈ZI∩Q

πσi (z[I], z)ui(z)

+
∑

zha∈ZI∩B
πσi (zha[I], ha)ui(zha)

]
,

where
qi(I) =

∏
(I′,a′)∈Xi(I)

P[a′ ∈ Q(I ′)]

is the probability that ZI∩Q 6= ∅ contributed from sampling
player i’s actions. Here, Xi(I) is the sequence of informa-
tion set, action pairs for player i that lead to information set
I , and this sequence is unique due to perfect recall. When
ZI ∩Q = ∅, v̂i(σ, I) is defined to be zero.
Proposition 1 If qi(I) > 0 for all I ∈ Ii, then v̂i(σ, I) is a
bounded, unbiased estimate of vi(σ, I).

Proposition 1 and Theorem 2 provide a probabilistic guar-
antee that updating regrets according to our estimated coun-
terfactual values will minimize the average regret, and
thus produce an ε-Nash equilibrium. Note that the differ-
ences ṽi(σ(I→a), I) − ṽi(σ(I→b), I) and v̂i(σ(I→a), I) −
v̂i(σ(I→b)I) are both bounded above by ∆̂i = ∆i/δ, where
δ = minI∈Ii qi(I). Thus, Theorem 2 suggests that variance



reduction should lead to less regret after a fixed number of
iterations. Probing specifically aims to achieve variance re-
duction through v̂i(σ, I) when only a strict subset of player
i’s actions are sampled. Note that if we always sample all of
player i’s actions, we have B = ∅ and v̂i(σ, I) = ṽi(σ, I).

Algorithm 1 provides pseudocode for our new algorithm
that updates regrets according to our estimated counter-
factual values. The Probe function recurses down the tree
from history h following a single trajectory according to the
known chance probabilities (line 9) and the current strategy
obtained through regret matching (line 13, see equation (1))
until the utility at a single terminal history is returned (line
7). The WalkTree function is the main part of the algorithm
and contains three major cases. Firstly, if the current history
h is a terminal history, we simply return the utility (line 19).
Second, if player i does not act at h (lines 20 to 31), then our
assumption onQ dictates that a single action is traversed on-
policy (lines 21 and 29). The third case covers player i act-
ing at h (lines 32 to 46). After sampling a set of actions (line
34), the value of each action a, v[a], is obtained. For each
sampled action, we obtain its value by recursing down that
action (line 38) after updating the sample probability for fu-
ture histories (line 37). While MCCFR assigns zero value to
each non-sampled action, Algorithm 1 instead obtains these
action values through the probe function (line 40). Note that
q = qi(I) is the probability of reaching I contributed from
sampling player i’s actions, and that the estimated counter-
factual value v̂i(σ(I→a), I) = v[a]/q. After obtaining all
values, the regret of each action is updated (line 44).

Running the Solve function for a large enough number of
iterations T will produce an approximate Nash equilibrium
σ̄, where σ̄(I, a) = sI [a]/

∑
b∈A(I) sI [b]. Note that Algo-

rithm 1 updates the cumulative profile (line 27) in a slightly
different manner than the MCCFR algorithm presented by
Lanctot et al. (2009b, Algorithm 1). Firstly, we divide the
update by the probability qi(I) of reaching I underQ (which
Lanctot et al. call updating “stochastically”), as opposed to
“optimistic averaging” that the authors mention is not tech-
nically correct. Second, we update player i’s part of the pro-
file during the opponent’s traversal instead of during player
i’s traversal. Doing so ensures that any information set that
will contribute positive probability to the cumulative profile
can be reached, which along with stochastic updating pro-
duces an unbiased update. These changes are not specific to
our new algorithm and can also be applied to MCCFR.

Experimental Results
In this section, we compare MCCFR to our new sampling
algorithm in three domains, which we now describe.

Goofspiel(n) is a card-bidding game consisting of n
rounds. Each player begins with a hand of bidding cards
numbered 1 to n. In our version, on round k, players secretly
and simultaneously play one bid from their remaining cards
and the player with the highest bid receives n−k+1 points;
in the case of a tie, no points are awarded. The player with
the highest score after n rounds receives a utility of +1 and
the other player earns −1, and both receive 0 utility in a tie.
Our version of Goofspiel is less informative than conven-

Algorithm 1 CFR sampling with probing

1: Require: ∀ I , action set sampling distribution Q(I)
2: Initialize regret: ∀I, ∀a ∈ A(I) : rI [a]← 0
3: Initialize cumulative profile: ∀I, ∀a ∈ A(I) : sI [a]← 0
4:
5: function Probe(history h, player i):
6: if h ∈ Z then
7: return ui(h)
8: else if h ∈ P (c) then
9: Sample action a ∼ σc(h, ·)

10: else
11: I ← Information set containing h
12: σ ←RegretMatching(rI )
13: Sample action a ∼ σ
14: end if
15: return Probe(ha, i)
16:
17: function WalkTree(history h, player i, sample prob q):
18: if h ∈ Z then
19: return ui(h)
20: else if h ∈ P (c) then
21: Sample action a ∼ σc(h, ·)
22: return WalkTree(ha, i, q)
23: else if h /∈ P (i) then
24: I ← Information set containing h
25: σ ←RegretMatching(I)
26: for a ∈ A(I) do
27: sI [a]← sI [a] + (σ[a]/q)
28: end for
29: Sample action a ∼ σ
30: return WalkTree(ha, i, q)
31: end if
32: I ← Information set containing h
33: σ ← RegretMatching(rI )
34: Sample action set Q(I) ∼ Q(I)
35: for a ∈ A(I) do
36: if a ∈ Q(I) then
37: q′ ← q · PQ(I)[a ∈ Q(I)]
38: v[a]←WalkTree(ha, i, q′)
39: else
40: v[a]← Probe(ha, i)
41: end if
42: end for
43: for a ∈ A(I) do
44: rI [a]← rI [a] + (1/q)

(
v[a]−

∑
b∈A(I) σ[b]v[b]

)
45: end for
46: return

∑
a∈A(I) σ[a]v[a]

47:
48: function Solve(iterations T ):
49: for t ∈ {1, 2, ..., T} do
50: WalkTree(∅, 1, 1)
51: WalkTree(∅, 2, 1)
52: end for

tional Goofspiel as players know which of the previous bids
were won or lost, but not which cards the opponent played.



Bluff(D1, D2) is a dice-bidding game played over a num-
ber of rounds. Each player i starts with Di six-sided dice.
In each round, players roll their dice and look at the result
without showing their opponent. Then, players alternate by
bidding a quantity of a face value, q-f , of all dice in play
until one player claims that the other is bluffing (i.e., claims
that the bid does not hold). To place a new bid, a player must
increase q or f of the current bid. A face of 6 is considered
“wild” and counts as any other face value. The player calling
bluff wins the round if the opponent’s last bid is incorrect,
and loses otherwise. The losing player removes one of their
dice from the game and a new round begins. Once a player
has no more dice left, that player loses the game and receives
a utility of −1, while the winning player earns +1 utility.

Finally, we consider heads-up (i.e., two-player) limit
Texas hold’em poker that is played over four betting rounds.
To begin, each player is dealt two private cards. In later
rounds, public community cards are revealed with a fifth and
final card appearing in the last round. During each betting
round, players can either fold (forfeit the game), call (match
the previous bet), or raise (increase the previous bet), with
a maximum of four raises per round. If neither player folds,
then the player with the highest ranked poker hand wins all
of the bets. Hold’em contains approximately 3× 1014 infor-
mation sets, making the game intractable for any equilibrium
computation technique. A common approach in poker is to
apply a card abstraction that merges similar card dealings to-
gether into a single chance “bucket” (Gilpin and Sandholm
2006). We apply a ten-bucket abstraction that reduces the
branching factor at each chance node down to ten, where
dealings are grouped according to expected hand strength
squared as described by Zinkevich et al. (2008). This ab-
stract game contains roughly 57 million information sets.

We use domain knowledge and our intuition to select the
sampling schemes Q. By our earlier assumption, we always
sampling a single action on-policy when P (h) 6= i, as is
done in Algorithm 1. For the traversing player i, we focus
on sampling actions leading to more “important” parts of the
tree, while sampling other actions less frequently. Doing so
updates the regret at the important information sets more fre-
quently to quickly improve play at those locations. In Goof-
spiel, we always sample the lowest and highest bids, while
sampling each of the remaining bids independently with
probability 0.5. Strong play can be achieved by only ever
playing the highest bid (giving the best chance at winning
the bid) or the lowest bid (sacrificing the current bid, leaving
higher cards for winning future bids), suggesting that these
actions will often be taken in equilibrium. In Bluff(2,2), we
always sample “bluff” and the bids 1-5, 2-5, 1-6, 2-6, and
for each face x that we roll, n-x for all 1 ≤ n ≤ 4. Bid-
ding on the highest face is generally the best bluff since the
opponent’s next bid must increase the quantity, and bidding
on one’s own dice roll is more likely to be correct. Finally,
in hold’em, we always sample fold and raise actions, while
sampling call with probability 0.5. Folds are cheap to sample
(since the game ends) and raise actions increase the number
of bets and consequently the magnitude of the utilities.

Firstly, we performed a test run of CFR in Goofspiel(6)
that measured the empirical variance of the samples ṽi(σ, I)
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Figure 2: Empirical Var[ṽi(σ
t, I)] and Var[v̂i(σ

t, I)] over
iterations at the root of Goofspiel(6) in a test run of CFR.

provided by MCCFR and of v̂i(σ, I) provided by Algorithm
1. During each iteration t of the test run, we performed
2000 traversals with no regret or strategy updates, where
the first 1000 traversals computed ṽi(σt, I) and the second
1000 computed v̂i(σ

t, I) at the root I of the game. Both
ṽi(σ

t, I) and v̂i(σt, I) were computed under the same sam-
pling scheme Q described above for Goofspiel. Once the
empirical variance of each estimator was recorded from the
samples at time t, a full vanilla CFR traversal was then per-
formed to update the regrets and acquire the next strategy
σt+1. The first 150 empirical variances are reported in Fig-
ure 2. Since the estimators are unbiased, the variance here is
also equal to the mean squared error of the estimates. Over
1000 test iterations, the average variances were 0.295 for
MCCFR and 0.133 for Algorithm 1. This agrees with our
earlier intuition that probing reduces variance and provides
some validation for our choice of estimator.

Next, we performed five runs for each of MCCFR and
Algorithm 1, each under the same sampling schemes Q de-
scribed above. Similar to Algorithm 1, our MCCFR imple-
mentation also performs stochastic averaging during the op-
ponent’s tree traversal. For each domain, the average of the
results are provided in Figure 3. Our new algorithm con-
verges faster than MCCFR in all three domains. In partic-
ular, at our final data points, Algorithm 1 shows a 31%,
10%, and 18% improvement over MCCFR in Goofspiel(7),
Bluff(2,2), and Texas hold’em respectively. For both Goof-
spiel(7) and hold’em, the improvement was statistically
significant. In Goofspiel(7), for example, the level of ex-
ploitability reached by MCCFR’s last averaged data point
is reached by Algorithm 1 in nearly half the time.

Conclusion
We have provided a new theoretical framework that gen-
eralizes MCCFR and provides new insights into how the
estimated values affect the rate of convergence to an ap-
proximate Nash equilibrium. As opposed to the sampled
counterfactual values ṽi(σ, I) explicitly defined by MCCFR,
we considered any estimate v̂i(σ, I) of the true counterfac-



tual values. We showed that the average regret is minimized
(probabilistically) when the estimates are bounded and un-
biased. In addition, we derived an upper bound on the av-
erage regret in terms of the variance of the estimates, sug-
gesting that estimators with lower variance will converge to
an ε-Nash equilibrium in fewer iterations. Finally, we pro-
vided an example of a non-MCCFR algorithm that reduces
variance with little computational overhead by probing non-
sampled actions. Our new algorithm approached equilibrium
faster than its MCCFR counterpart in all of the reported
experiments. We suspect that there are other efficiently-
computable definitions of v̂i(σ, I) that are bounded, unbi-
ased, and exhibit lower variance than our probing example.
Future work will attempt to further improve convergence
rates through such alternative definitions.
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(b) Bluff(2,2)
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(c) Texas hold’em

Figure 3: Exploitability over time of strategies computed
by MCCFR and by Algorithm 1 using identical sampling
schemesQ, averaged over five runs. Error bars indicate 95%
confidence intervals at each of the five averaged data points.
In hold’em, exploitability is measured in terms of milli-big-
blinds per game (mbb/g).


