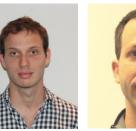
Multiagent Reinforcement Learning

Marc Lanctot

RLSS @ Lille, July 11th 2019

Joint work with many great collaborators!

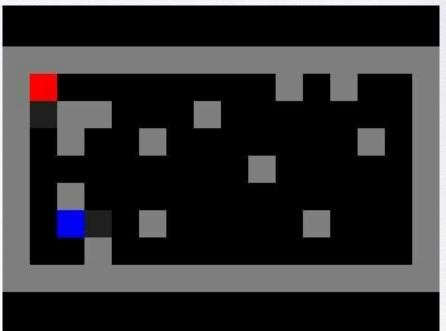


Talk plan

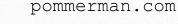
- 1. What is Multiagent Reinforcement Learning (MARL)?
- 2. Foundations & Background
- 3. Basic Formalisms & Algorithms
- 4. Advanced Topics

Part 1: What is MARL?

Multiagent Reinforcement Learning

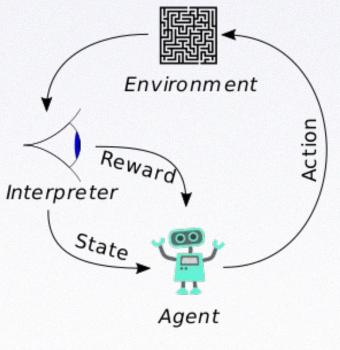


Laser Tag



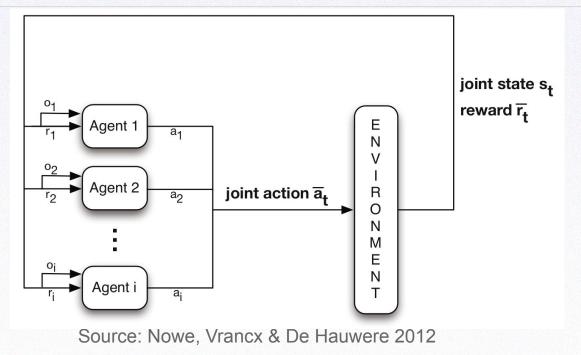
Multiagent Reinforcement Learning

Traditional (Single-Agent) RL



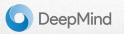
Source: Wikipedia

Multiagent Reinforcement Learning

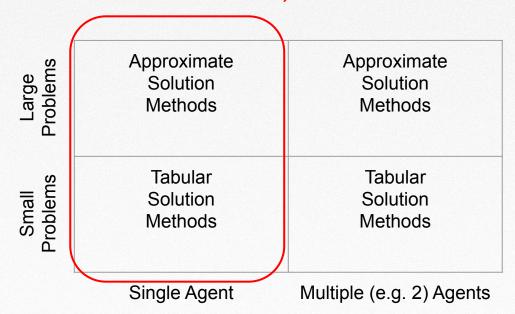


Motivations: Research in Multiagent RL

Large Problems	Approximate Solution Methods	Approximate Solution Methods
Small Problems	Tabular Solution Methods	Tabular Solution Methods
	Single Agent	Multiple (e.g. 2) Agents



Motivations: Research in Multiagent RL Sutton & Barto '98, '18

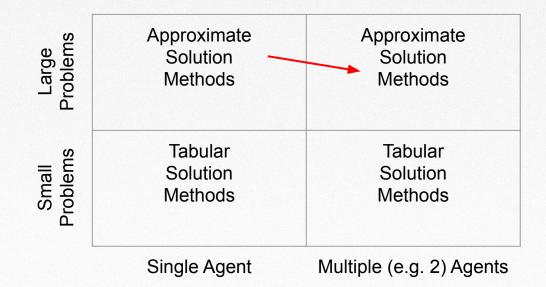


Motivations: Research in Multiagent RL

First era of multiagent RL

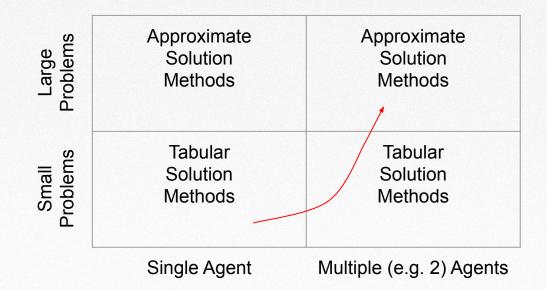
Large Problems	Approximate Solution Methods	Approximate Solution Methods
Small Problems	Tabular Solution Methods	Tabular Solution Methods
	Single Agent	Multiple (e.g. 2) Agents

Motivations: Research in Multiagent RL Multiagent Deep RL era ('16 - now)



Motivations: Research in Multiagent RL

Talk focus





Motivations: Research in Multiagent RL

My 10-year mission

Large Problems	Approximate Solution Methods	Approximate Solution Methods
Small Problems	Tabular Solution Methods	Tabular Solution Methods
	Single Agent	Multiple (e.g. 2) Agents



Important Historical Note

If multi-agent learning is the answer, what is the question?

Yoav Shoham, Rob Powers, and Trond Grenager Stanford University {shoham,powers,grenager}@cs.stanford.edu February 15, 2006

Foundations of multi-agent learning: Introduction to the special issue

Rakesh V. Vohra, Michael P. Wellman

Pages 363-364

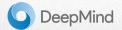
An economist's perspective on multi-agent learning Drew Fudenberg, David K. Levine Pages 378-381

Perspectives on multiagent learning Tuomas Sandholm Pages 382-391

Agendas for multi-agent learning Geoffrey J. Gordon Pages 392-401

Multiagent learning is not the answer. It is the question Peter Stone Pages 402-405

What evolutionary game theory tells us about multiagent learning Karl Tuyls, Simon Parsons Pages 406-416

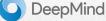


Multi-agent learning and the descriptive value of simple models Ido Erev, Alvin E. Roth

Pages 423-428

The possible and the impossible in multi-agent learning H. Peyton Young Pages 429-433

No regrets about no-regret Yu-Han Chang Pages 434-439



A hierarchy of prescriptive goals for multiagent learning Martin Zinkevich, Amy Greenwald, Michael L. Littman Pages 440-447

Learning equilibrium as a generalization of learning to optimize Dov Monderer, Moshe Tennenholtz Pages 448-452

Some Specific Axes of MARL

Centralized:

• One brain / algorithm deployed across many agents

Decentralized:

- All agents learn individually
- Communication limitations defined by environment

Some Specific Axes of MARL

Prescriptive:

• Suggests how agents *should* behave

Descriptive:

• Forecast how agent *will* behave

Some Specific Axes of MARL

Cooperative: Agents cooperate to achieve a goal

Competitive: Agents compete against each other

Neither: Agents maximize their utility which may

require cooperating and/or competing

Our Focus Today

- Centralized training for decentralized execution (very common)
- 2. Mostly prescriptive
- 3. Mostly competitive; sprinkle of cooperative and neither

Part 2: Foundations & Background

Shoham & Leyton-Brown '09

Main Page Table of Contents Instructional Resources Errata eBook Download new!

Multiagent Systems

YOAV SHOHAM KEVIN LEYTON-BROWN

Comment

Multiagent Systems Algorithmic, Game-Theoretic, and Logical Foundations

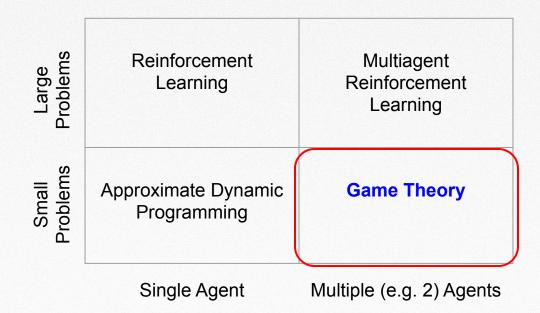
Yoav Shoham Stanford University Kevin Leyton-Brown University of British Columbia

Cambridge University Press, 2009 Order online: amazon.com.

masfoundations.org

Foundations of (MA)RL

Foundations of Multiagent RL



Biscuits vs Cookies

A Note on Terminology

Player Agent Game Environment Strategy Policy Best Response Greedy Policy Utility Reward State (Information) State



• Set of players $i \in \mathcal{N} = \{1, 2, \cdots, n\}$

- Set of players $~i\in\mathcal{N}=\{1,2,\cdots,n\}$
- Each player has set of actions $\ \mathcal{A}_i \in \{a_1, a_2, \dots\}$

- Set of players $\,i\in\mathcal{N}=\{1,2,\cdots,n\}$
- Each player has set of actions $\mathcal{A}_i \in \{a_1, a_2, \dots\}$
- Set of joint actions $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_n$

- Set of players $~i\in\mathcal{N}=\{1,2,\cdots,n\}$
- Each player has set of actions $\mathcal{A}_i \in \{a_1, a_2, \dots\}$
- Set of joint actions $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_n$
- A utility function $u:\mathcal{N}\times\mathcal{A}\to U\subseteq\Re$

column player

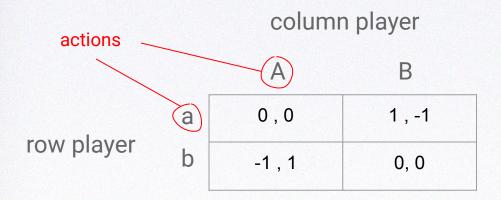
R

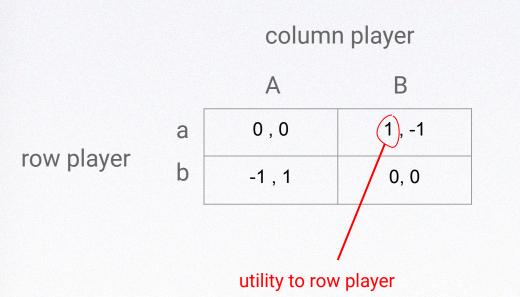
row player

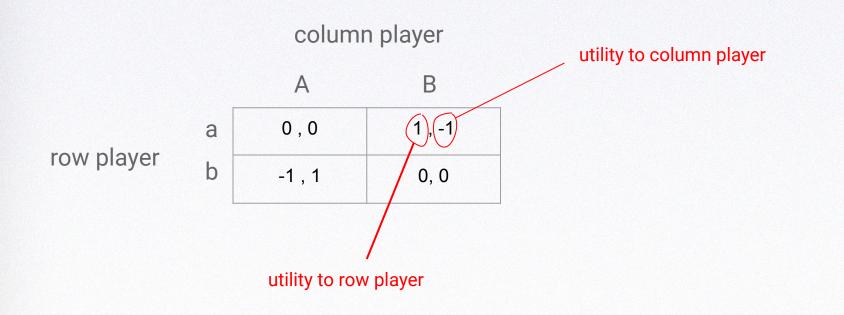
		U
a	0,0	1 , -1
b	-1 , 1	0, 0

Δ

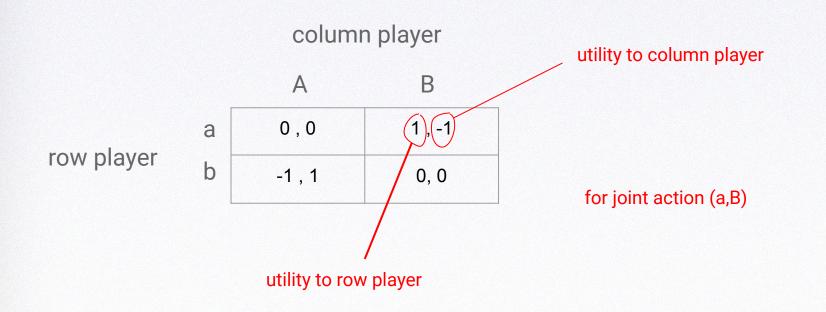
Google DeepMind







Example: (Bi-)Matrix Games (n = 2)



Normal-form "One-Shot" Games

- Set of players $\ i \in \mathcal{N} = \{1, 2, \cdots, n\}$
- Each player has set of actions $\mathcal{A}_i \in \{a_1, a_2, \dots\}$
- Set of joint actions $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_n$
- A utility function $u:\mathcal{N}\times\mathcal{A}\to U\subseteq\Re$

Each player: $\pi_i \in \Delta(\mathcal{A}_i)$, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

Normal-form "One-Shot" Games

- Set of players $\ i \in \mathcal{N} = \{1, 2, \cdots, n\}$
- Each player has set of **actions** $\mathcal{A}_i \in \{a_1, a_2, \dots\}$
- Set of joint actions $\mathcal{A} = \mathcal{A}_1 imes \mathcal{A}_2 imes \cdots imes \mathcal{A}_n$
- A utility function $u:\mathcal{N}\times\mathcal{A}\to U\subseteq\Re$

Each player: $\pi_i \in \Delta(\mathcal{A}_i)$, maximize $\mathbb{E}_{a \sim \overline{\pi}}[u_i(a)]$ **Problem!** This is a *joint* policy

Suppose we are player i and we fix policies of other players

Suppose we are player i and we fix policies of other players $(-i = N - \{i\})$

Suppose we are player i and we fix policies of other players $(-i = N - \{i\})$

$$\pi_i \in \Delta(\mathcal{A}_i), \text{ maximize } \mathbb{E}_{a \sim \pi}[u_i(a)]$$

Suppose we are player i and we fix policies of other players $(-i = N - \{i\})$

$$\pi_i \in \Delta(\mathcal{A}_i)$$
, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

 $\pi_i \in BR(\pi_{-i}) \Leftrightarrow u_i(\pi_i, \pi_{-i}) = \max_{\pi'_i} \mathbb{E}_{a \sim (\pi'_i, \pi_{-i})}[u_i(a)]$

Suppose we are player i and we fix policies of other players $(-i = N - \{i\})$

$$\pi_i \in \Delta(\mathcal{A}_i), \text{ maximize } \mathbb{E}_{a \sim \pi}[u_i(a)]$$

 $\pi_i \in BR(\pi_{-i}) \Leftrightarrow u_i(\pi_i, \pi_{-i}) = \max_{\pi'_i} \mathbb{E}_{a \sim (\pi'_i, \pi_{-i})} [u_i(a)]$

 π_i is a **best response** to π_{-i}

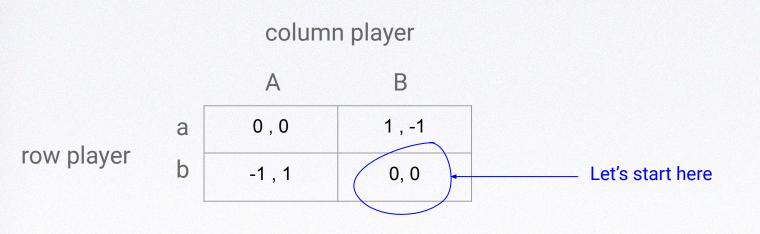
column player

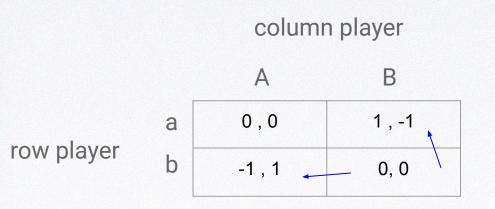
B

row player

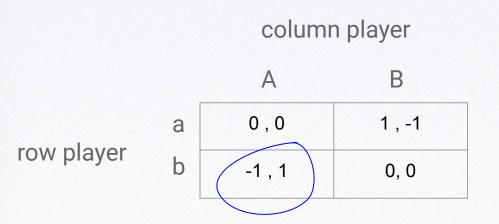
а	0,0	1 , -1
b	-1 , 1	0, 0

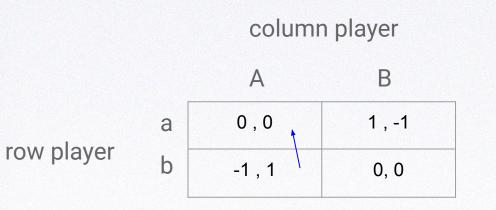
Δ

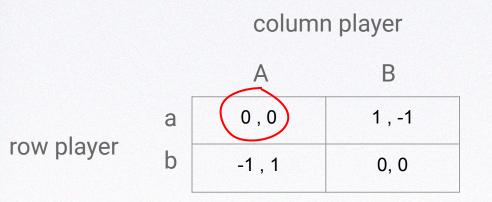




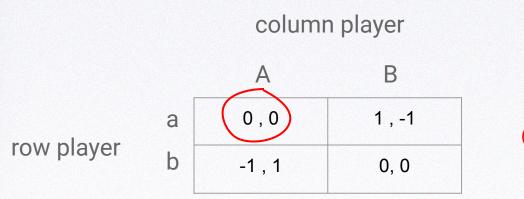
Both players have *incentive to deviate* (assuming the opponent stays fixed)







(a,A) is a fixed point of this process



(a,A) is a fixed point of this process

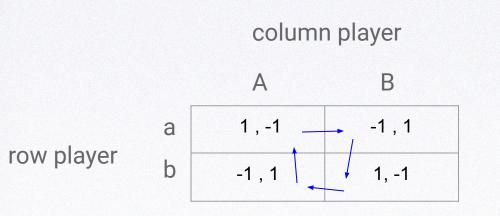
 $\pi_i \in \Delta(\mathcal{A}_i)$, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

Let's Try Another....

A B a 1, -1 -1, 1 ayer b -1, 1 1, -1

row player

Let's Try Another....



Nash equilibrium

A Nash equilibrium is a **joint policy** π such that no player has incentive to deviate *unilaterally*.

Nash equilibrium: A Solution Concept

A Nash equilibrium is a **joint policy** π such that no player has incentive to deviate *unilaterally*.

$\forall i \in \mathcal{N}, \pi_i \in BR(\pi_{-i})$

Some Facts

- Nash equilibrium always exists in finite games
- Computing a Nash eq. is PPAD-Complete
 - One solution is to focus on tractable subproblems
 - Another is to compute approximations
- Assumes players are (unbounded) rational
- Assumes knowledge:
 - Utility / value functions
 - Rationality assumption is common knowledge

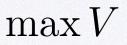
Matching Pennies:
$$u_1(\cdot) = -u_2(\cdot)$$

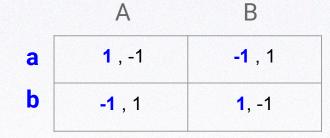
column player

row player

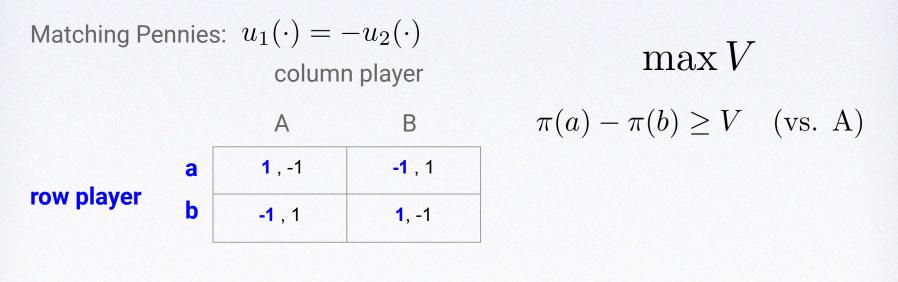
Matching Pennies:
$$u_1(\cdot) = -u_2(\cdot)$$

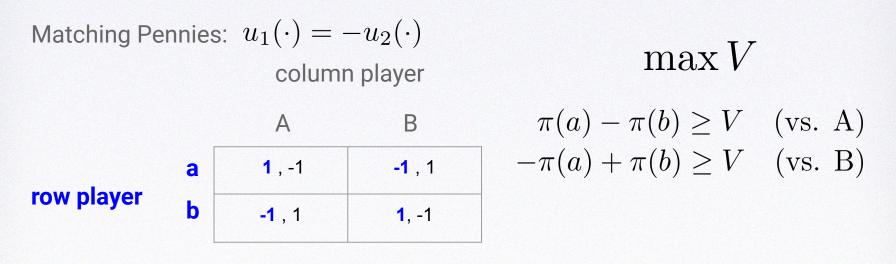
column player

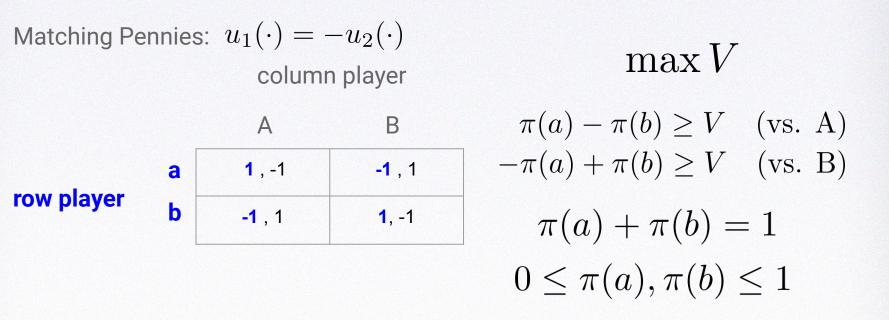




row player







Best Response Condition

For any (possibly stochastic) joint policy $\,\pi_{-i}$,

There exists a **deterministic** best response:

$$\pi_i^b \in BR(\pi_{-i})$$

Best Response Condition

For any (possibly stochastic) joint policy $\,\pi_{-i}$,

There exists a **deterministic** best response:

$$\pi_i^b \in BR(\pi_{-i})$$

<u>Proof</u>: Assume otherwise. The values of each deterministic policy (action) must be the same, by def. of BR. Then we can put full weight on any of them.

Matching Pennies: $u_1(\cdot) = -u_2(\cdot)$ $\max V$ column player $\pi(a) - \pi(b) \ge V \quad (vs. A)$ B A $-\pi(a) + \pi(b) \ge V \quad (vs. B)$ 1, -1 **-1**, 1 a row player b **-1**, 1 1, -1 $\pi(a) + \pi(b) = 1$ $0 \le \pi(a), \pi(b) \le 1$

This is a Linear Program!

- Solvable in polynomial time (!)
 - Easy to apply off-the-shelf solvers
- Will find one solution
- Matching Pennies: $\pi(a) = \pi(b) = \frac{1}{2}, V = 0$

Minimax

John von Neumann 1928

Max-min: P1 looks for a π_1 such that $v_1 = \max_{\pi_1} \min_{\pi_2} u_1(\pi_1, \pi_2)$ **Min-max**: P1 looks for a π_1 such that $v_1 = \min_{\pi_2} \max_{\pi_1} u_1(\pi_1, \pi_2)$ In two-player, zero-sum these are the same!

---> The Minimax Theorem

Consequences of Minimax

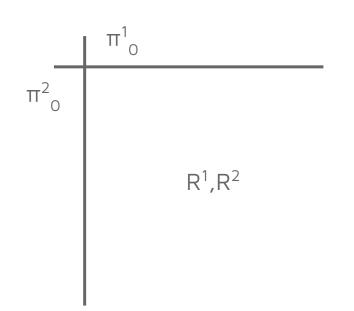
The optima $\pi^*=(\pi_1^*,\pi_2^*)$

- These exist! (They sometimes might be stochastic.)
- Calles a minimax-optimal joint policy. Also, a Nash equilibrium.
- They are interchangeable:

$$\forall \pi^*, \pi^{*\prime} \Rightarrow (\pi_1^*, \pi_2^{*\prime}), (\pi_1^{*\prime}, \pi_2^*) \quad \text{also minimax-optimal}$$

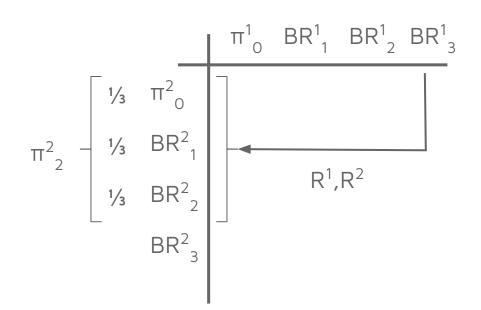
• Each policy is a **best response** to the other.

• Fictitious Play:



• Start with an arbitrary policy per player (π_0^1, π_0^2) ,

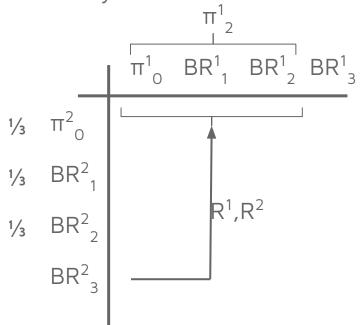
• Fictitious Play:



- Start with an arbitrary policy per player (π_0^1, π_0^2) ,
 - Then, play best response
 - against a uniform distribution
 - over the past policy of the

opponent (BR¹_n,BR²_n).

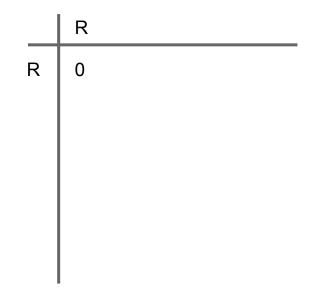
• Fictitious Play:



- Start with an arbitrary policy per player $(\pi^{1}_{0}, \pi^{2}_{0})$,
 - Then, play best response
 - against a uniform distribution over the past policy of the

opponent (BR¹_n,BR²_n).

Fictitious Play:
 Start with (R, P, S) = (1, 0, 0), (1, 0, 0)



• Fictitious Play:

R

Ρ

• Start with (R, P, S)= (1, 0, 0), (1, 0, 0)

•	Iteration	1:
---	-----------	----

R	Р	0	BR ¹ ₁ ,BR ² ₁ = P, P
0	1	0	(1/2, 1/2, 0), (1/2, 1/2, 0)
-1	0		

• Fictitious Play:

	R	Ρ	Ρ	
R	0	1	1	
Ρ	-1	0	0	
Ρ	-1	0	0	

- Start with (R, P, S)= (1, 0, 0), (1, 0, 0)
- Iteration 1:
 - \circ BR¹₁,BR²₁ = P, P
 - $\circ \quad (\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}, 0)$
- Iteration 2:
 - $\circ \quad \mathsf{BR}^{1}_{2}, \mathsf{BR}^{2}_{2} = \mathsf{P}, \mathsf{P}$
 - $\circ \quad (\frac{1}{3}, \frac{2}{3}, 0), (\frac{1}{3}, \frac{2}{3}, 0)$

• Fictitious Play:

	R	Ρ	Ρ	S	
R	0	1	1	-1	
Ρ	-1	0	0	1	
Ρ	-1	0	0	1	
S	1	-1	-1	0	

- Start with (R, P, S)= (1, 0, 0), (1, 0, 0)
- Iteration 1:
 - \circ BR¹₁,BR²₁ = P, P
 - $\circ \quad (\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}, 0)$
- Iteration 2:
 - $\circ \quad \mathsf{BR}^{1}_{2}, \mathsf{BR}^{2}_{2} = \mathsf{P}, \mathsf{P}$
 - $\circ \quad (\frac{1}{3}, \frac{2}{3}, 0), (\frac{1}{3}, \frac{2}{3}, 0)$
- Iteration 3:
 - $\circ \quad \mathsf{BR}^{1}_{3}, \mathsf{BR}^{2}_{3} = \mathsf{S}, \mathsf{S}$
 - $\circ \quad (1/_4,1/_2,1/_4), \ (1/_4,1/_2,1/_4)$

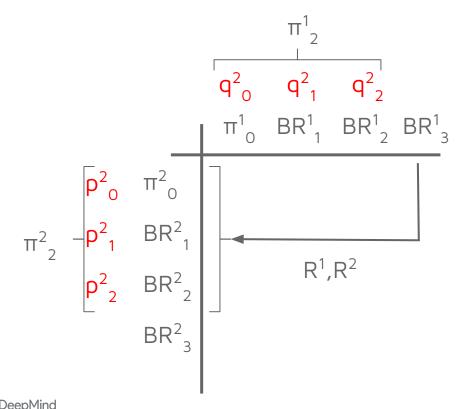
• Fictitious Play:

	R	Ρ	Ρ	S	S	
R	0	1	1	-1	-1	
Ρ	-1	0	0	1	1	
Ρ	-1		-	1	1	
S	1	-1	-1	0	0	
S	1	-1	-1	0	0	

- Start with (R, P, S)= (1, 0, 0), (1, 0, 0)
- Iteration 1:
 - \circ BR¹₁,BR²₁ = P, P
 - $\circ \quad (\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}, 0)$
- Iteration 2:
 - $\circ BR_{2}^{1},BR_{2}^{2} = P, P$
 - $\circ \quad (\frac{1}{3}, \frac{2}{3}, 0), (\frac{1}{3}, \frac{2}{3}, 0)$
- Iteration 3:
 - $BR_{3}^{1}, BR_{3}^{2} = S, S$
 - $\circ \quad (1/_4,1/_2,1/_4), \ (1/_4,1/_2,1/_4)$

DeepMind

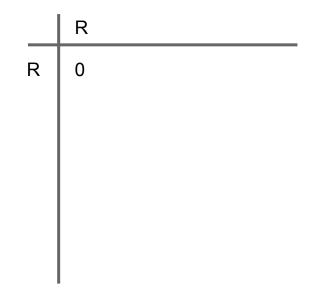
• double oracle [HB McMahan 2003]:



- Start with an arbitrary policy per player $(\pi^{1}_{o}, \pi^{2}_{o})$,
 - Compute (pⁿ,qⁿ) by solving the game at iteration n
 - Then, best response against
 (pⁿ,qⁿ) and get a new best
 response (BR¹_n,BR¹_n).

• Start with (R, P, S)= (1, 0, 0), (1, 0, 0)

• double oracle:



• double oracle:

	R	Ρ	
R	0	1	
Ρ	-1	0	

• Iteration 1:

- $\circ \quad \mathsf{BR}^{1}_{1}, \mathsf{BR}^{2}_{1} = \mathsf{P}, \mathsf{P}$
- Solve the game : (0, 1, 0), (0, 1,

Start with (R, P, S)= (1, 0, 0), (1, 0, 0)

O)

• double oracle:

	R	Ρ	S	
R	0	1	-1	
Ρ	-1	0	1	
S	1	-1	0	

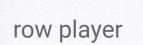
- Start with (R, P, S)= (1, 0, 0), (1, 0, 0)
- Iteration 1:
 - $\circ \quad \mathsf{BR}^{1}_{1}, \mathsf{BR}^{2}_{1} = \mathsf{P}, \mathsf{P}$
 - Solve the game : (0, 1, 0), (0, 1,
 0)
- Iteration 2:
 - $\circ BR_{2}^{1}, BR_{2}^{2} = S, S$
 - $\bigcirc \quad \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right), \ \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right)$

Cooperative Games

$$u_i(\cdot) = u_j(\cdot)$$

column player

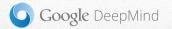
С



а	1, 1	0, 0	0, 0
b	0, 0	2, 2	0, 0
С	0, 0	0, 0	5, 5

В

Α



Cooperative Games

$$u_i(\cdot) = u_j(\cdot)$$

column player

B

С

0, 0

0,0

5, 5

A

row player

These are all Nash equilibria!

General-Sum Games

No constraints on utilities!

	COlumn	column player					
	А	В					
а	3, 2	0, 0					
b	0, 0	2, 3					

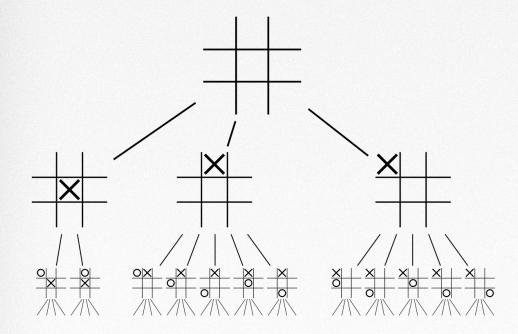
column player

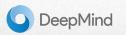
row player

The Sequential Setting: Extensive-Form Games

What about sequential games...?

Perfect Information Games





• Start with an episodic MDP

- Start with an *episodic* MDP
- Add a **player identity** function:

 $\tau(s) \in \mathcal{N} \cup \{s\}$

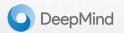
Simultaneous move node (many players play simultaneously)

- Start with an *episodic* MDP
- Add a **player identity** function:

$$\tau(s) \in \mathcal{N} \cup \{s\}$$

• Define rewards per player:

$$r_i(s, a, s')$$
 for $i \in \mathcal{N}$



- Start with an *episodic* MDP
- Add a **player identity** function:

$$\tau(s) \in \mathcal{N} \cup \{s\}$$

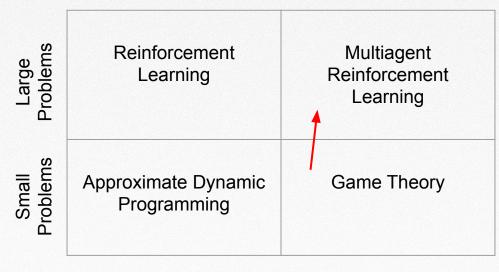
• Define rewards per player:

$$r_i(s, a, s')$$
 for $i \in \mathcal{N}$

• (Similarly for returns: $G_{t,i}$ is the return to player i from s_t)

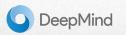
Part 3: Basic Formalisms & Algorithms

Foundations of RL



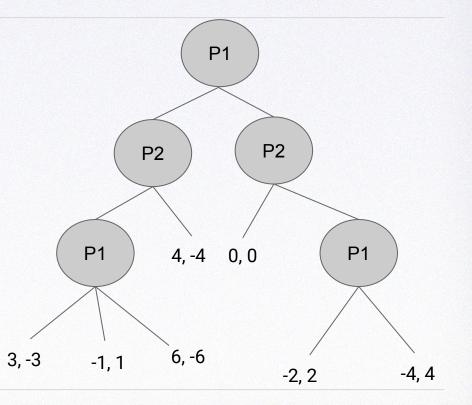
Single Agent

Multiple (e.g. 2) Agents

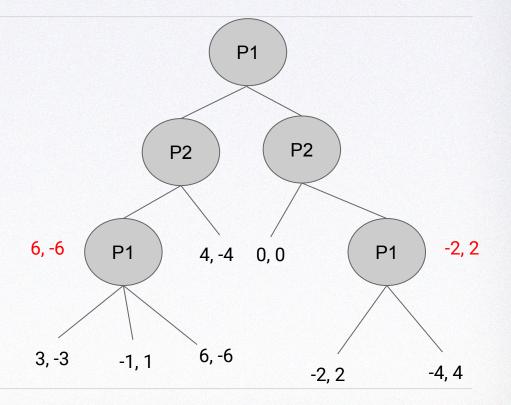


Presentation Title - SPEAKER

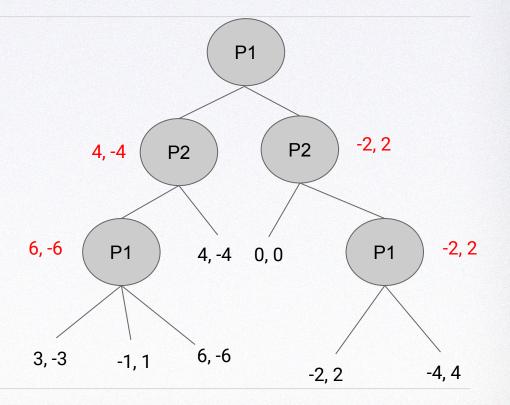
Solving a *turn-taking* perfect information game



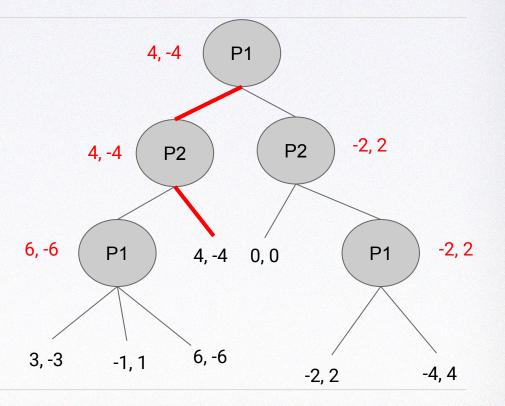
Solving a *turn-taking* perfect information game



Solving a *turn-taking* perfect information game



Solving a *turn-taking* perfect information game



Intro to RL: Tabular Approximate Dyn. Prog.

Value iteration

```
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)
Repeat
    \Delta \leftarrow 0
    For each s \in S:
         v \leftarrow V(s)
         V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r+\gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi \approx \pi_*, such that
   \pi(s) = \operatorname{arg\,max}_{a} \sum_{s',r} p(s', r | s, a) \left[ r + \gamma V(s') \right]
```


Turn-Taking 2P Zero-sum Perfect Info. Games

- Player to play at s: $\tau(s)$
- Reward to player i: r_i
- Subset of legal actions LEGALACTIONS(s)
- Often assume episodic and $\gamma = 1$

Values of a state to player i: $V_i(s)$ Identities:

$$\forall s, a, s': r_1 = -r_2, \quad V_1(s) = -V_2(s)$$

2P Zero-Sum Perfect Info. Value Iteration

Value iteration

```
Initialize array V_i arbitrarily (e.g., V_i(s) = 0 for all s \in S^+)
Repeat

    Let i = t(s)

    \Delta \leftarrow 0
    For each s \in S:
          v \leftarrow V_i(s)
         V_i(s) \leftarrow \max_a \sum_{s', r_i} p(s', r_i | s, a) [r_i + \gamma V_i(s')]
         \Delta \leftarrow \max(\Delta, |v - V_i(s)|)
until \Delta < \theta (a small positive number)
                                                                                 = t(s)
Output a deterministic policy, \pi \approx \pi_*, such that
   \pi(s) = \operatorname{arg\,max}_a \sum_{s',r_i} p(s',r_i|s,a) \left[r_i + \gamma V_i(s')\right]
```


Minimax

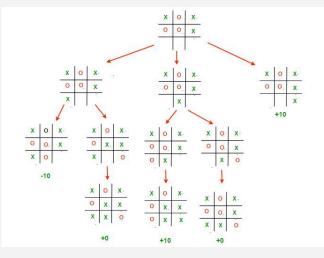
A.K.A. Alpha-Beta, Backward Induction, Retrograde Analysis, etc...

Start from search state $\,S$,

Compute a depth-limited approximation:

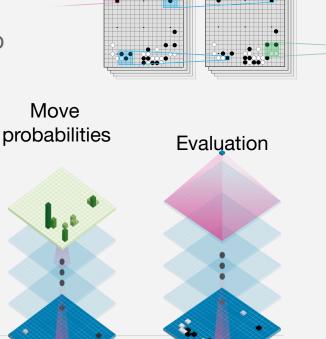
$$V_{i,d}(s) = \begin{cases} u_i(s) & \text{if } s \text{ is terminal,} \\ h_i(s) & \text{if } d = 0, \\ \sum_{s'} p(s, a, s') V_{i,d-1}(s') & \text{otherwise.} \end{cases}$$

---> Minimax Search



Two-Player Zero-Sum Policy Iteration

- Analogous to adaptation of value iteration
- Foundation of AlphaGo, AlphaGo Zero, AlphaZero
 - Better policy improvement via MCTS
 - Deep network func. approximation
 - Policy prior cuts down breadth
 - Value network cuts the depth



2P Zero-Sum Games with Simultaneous Moves

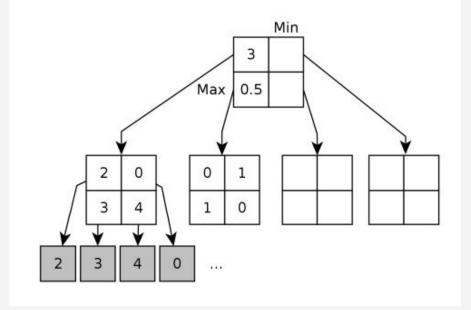


Image from Bozansky et al. 2016



Markov Games

"Markov Soccer"

(2)A --- +

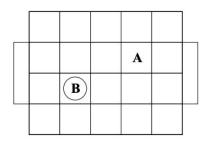
B

 $(1)^{-}$

(3)

O Ball

Goals



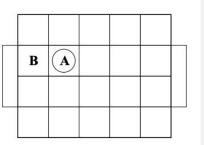
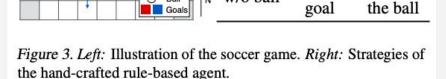


Figure 2: An initial board (left) and a situation requiring a probabilistic choice for A (right).

l ittman '94



w/ ball

↑N w/o ball

Defensive Offensive

Advance

to goal

Intercept

the ball

Avoid

opponent

Defend

He et al. '16

Also: Lagoudakis & Parr '02, Uther & Veloso '03, Collins '07

Value Iteration for Zero-Sum Markov Games

Value iteration

```
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)
Repeat
   \Delta \leftarrow 0
                                                \min_{a \sim \pi(s), s'} \mathbb{E}_{a \sim \pi(s), s'} [r_1(s, a, s') + \gamma V_1(s')]
   For each s \in S:
                                                \pi_2(s) \pi_1(s)
         v \leftarrow V(s)
         V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi \approx \pi_*, such that
                                                                       computed above
   \frac{\pi(s) = \operatorname{argmax}_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma V(s')]}{\pi(s')}
```

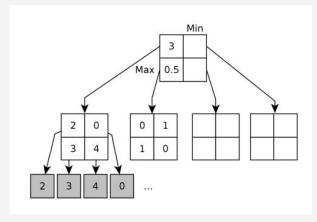

1. Start with arbitrary joint value functions $\,q(s,a,o)\,$

my action

opponent action

DeepMind

1. Start with arbitrary joint value functions $\,q(s,a,o)\,$



Induces a matrix of values

- 1. Start with arbitrary joint value functions $\, q(s,a,o) \,$
- 2. Define policy π as in value iteration (by solving an LP)



- 1. Start with arbitrary joint value functions $\, q(s,a,o) \,$
- 2. Define policy π as in value iteration (by solving an LP)
- 3. Generate trajectories of tuple (s, a, o, s') using behavior policy $\pi' = \epsilon \text{UNIF}(\mathcal{A}) + (1 \epsilon)\pi$



- 1. Start with arbitrary joint value functions $\,q(s,a,o)\,$
- 2. Define policy π as in value iteration (by solving an LP)
- 3. Generate trajectories of tuple (s, a, o, s') using behavior policy $\pi' = \epsilon \text{UNIF}(\mathcal{A}) + (1 - \epsilon)\pi$
- 4. Update $q(s, a, o) = (1 \alpha)q(s, a, o) + \alpha(r(s, a, o, s') + \gamma v(s'))$

First Era of MARL

Follow-ups to Minimax Q:

- Friend-or-Foe Q-Learning (Littman '01)
- Correlated Q-learning (Greenwald & Hall '03)
- Nash Q-learning (Hu & Wellman '03)
- Coco-Q (Sodomka et al. '13)

Function approximation:

• LSPI for Markov Games (Lagoudakis & Parr '02)

Nash Convergence of Gradient Dynamics in General-Sum Games

Satinder Singh

AT&T Labs Florham Park, NJ 07932 baveja@research.att.com

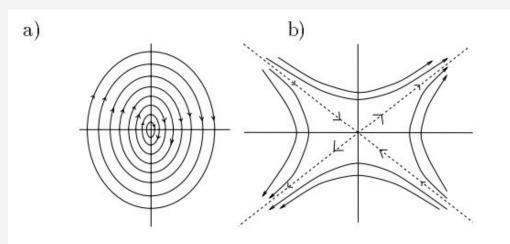
Michael Kearns

AT&T Labs Florham Park, NJ 07932 mkearns@research.att.com

Yishay Mansour

Tel Aviv University Tel Aviv, Israel mansour@math.tau.ac.il

Singh, Kearns & Mansour '03, Infinitesimal Gradient Ascent (IGA)



Formalize optimization as a dynamical system:

policy gradients

Analyze using well-established techniques

Figure 1: The general form of the dynamics: a) when U has imaginary eigenvalues and b) when U has real eigenvalues.

Image from Singh, Kearns, & Mansour '03

 $\rightarrow\,$ Evolutionary Game Theory: replicator dynamics

$$\dot{\pi}_t(a) = \pi_t(a) \big[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \big]$$

time derivative

 $\rightarrow\,$ Evolutionary Game Theory: replicator dynamics

$$\dot{\pi}_t(a) = \pi_t(a) \big[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \big]$$

time derivative

utility of action a against the joint policy / population of other players

 $\rightarrow\,$ Evolutionary Game Theory: replicator dynamics

$$\dot{\pi}_t(a) = \pi_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \pi_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

$$(\mu_t) = \mu_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

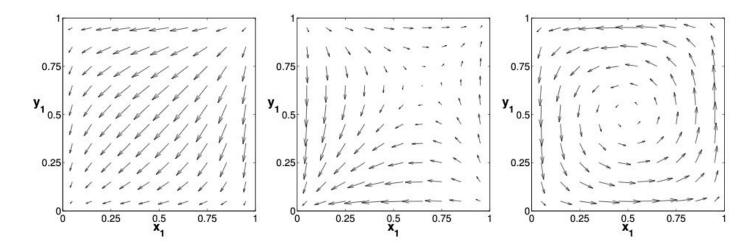


Figure 4: The replicator dynamics, plotted in the unit simplex, for the prisoner's dilemma (left), the stag hunt (center), and matching pennies (right).

Bloembergen et al. 2015

WoLF: Win or Learn Fast. (Bowling & Veloso '01).

IGA is **rational** but not **convergent**!

- *Rational*: opponents converge to a fixed joint policy
 - \rightarrow learning agent converges to a best response of joint policy
- *Convergent*: learner necessarily converges to a fixed policy

Use specific *variable learning rate* to ensure convergence (in 2x2 games)

Follow-ups to policy gradient and replicator dynamics:

- WoLF-IGA, WoLF-PHC
- WoLF-GIGA (Bowling '05)
- Weighted Policy Learner (Abdallah & Lesser '08)
- Infinitesimal Q-learning (Wunder et al. '10)
- Frequency-Adjusted Q-Learning (Kaisers et al. '10, Bloembergen et al. '11)
- Policy Gradient Ascent with Policy Prediction (Zhang & Lesser '10)
- Evolutionary Dynamics of Multiagent Learning (Bloembergen et al. '15)

Why call it "the first era"?

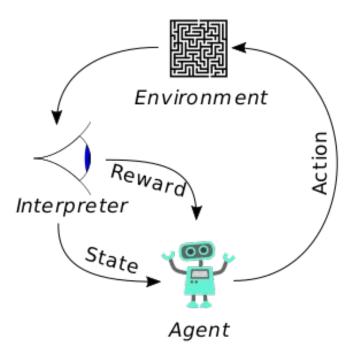
So.....

Why call it "the first era"?

Scalability was a major problem.

Second Era: Deep Learning meets Multiagent RL

Source: spectrum.ieee.org

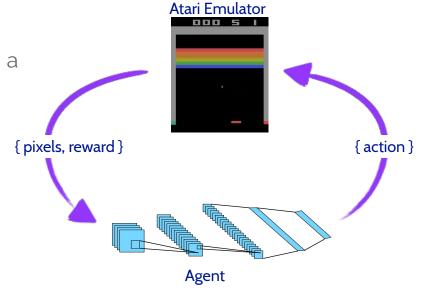


Source: wikipedia.org

Deep Q-Networks (DQN) Mnih et al. 2015

"Human-level control through deep reinforcement learning"

- Represent the action value (Q) function using a convolutional neural network.
- Train using end-to-end Q-learning.
- Can we do this in a stable way?



Independent Q-Learning Approaches

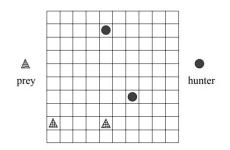
Maximum Q-value

0.5 0.0

Independent Q-learning [Tan, 1993]

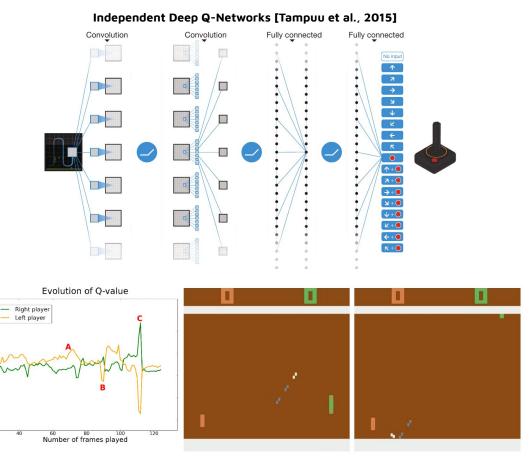
$$Q(x,a) \leftarrow Q(x,a) + \beta(r + \gamma V(y) - Q(x,a))$$

 $V(x) = \max_{b \in actions} Q(x, b)$



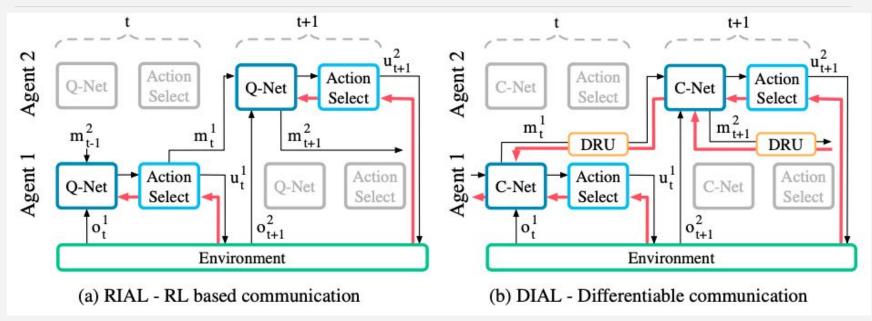
N-of-prey/N-of-hunters	1/1	1/2
Random hunters	123.08	56.47
Learning hunters	25.32	12.21

Table 1: Average Number of Steps to Capture a Prey



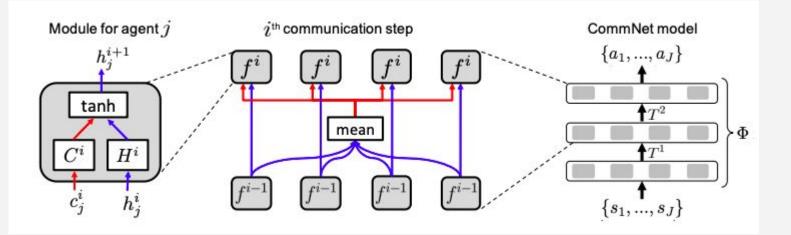
O DeepMind

Learning to Communicate



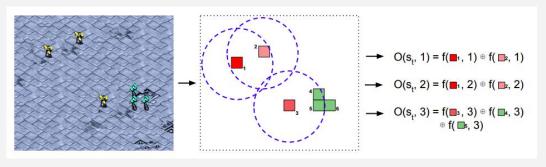
Foerster et al. '16

Learning to Communicate



Sukhbaatar et al. '16

Cooperative Multiagent Tasks

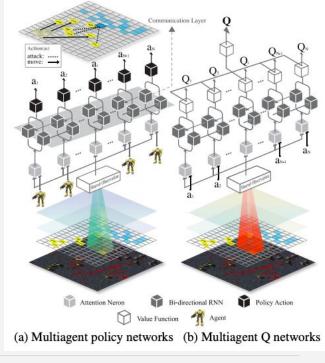


Foerster et al. '18

Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks

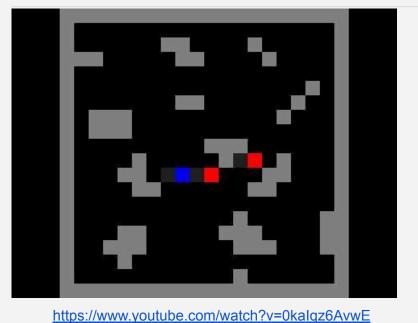
Nicolas Usunier*, Gabriel Synnaeve*, Zeming Lin, Soumith Chintala Facebook AI Research usunier,gab,zlin,soumith@fb.com

November 29, 2016

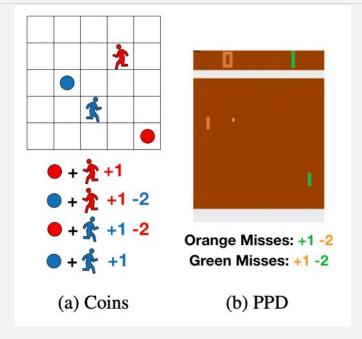


BIC-Net (Peng et al.'17)

Sequential Social Dilemmas



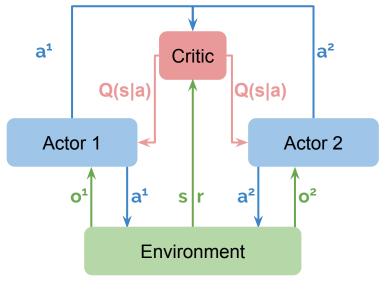
```
Leibo et al. '17
```



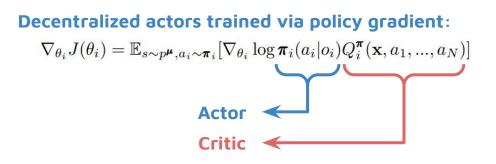
Lerer & Peyskavich '18

Centralized Critic Decentralized Actor Approaches

- Idea: reduce nonstationarity & credit assignment issues using a central critic
- **Examples:** MADDPG [Lowe et al., 2017] & COMA [Foerster et al., 2017]
- Apply to both cooperative and competitive games

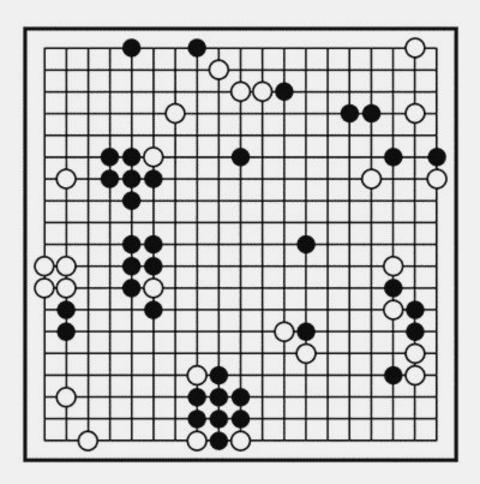


Centralized critic trained to minimize loss: $\mathcal{L}(\theta_i) = \mathbb{E}_{\mathbf{x},a,r,\mathbf{x}'}[(Q_i^{\pi}(\mathbf{x}, a_1, \dots, a_N) - y)^2],$ $y = r_i + \gamma Q_i^{\pi'}(\mathbf{x}', a_1', \dots, a_N')|_{a_j' = \pi_j'(o_j)}$



DeepMind

AlphaGo



AlphaGo vs. Lee Sedol

Lee Sedol (9p): winner of 18 world titles

Match was played in Seoul, March 2016

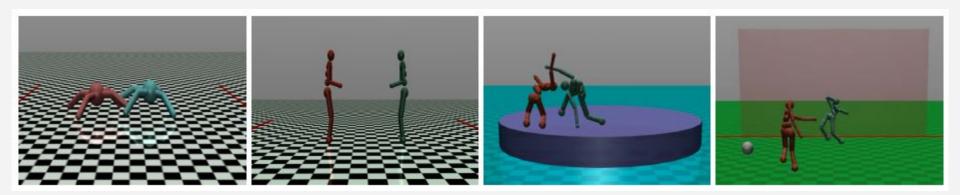
AlphaGo won the match 4-1

AlphaGo Zero

Mastering Go without Human Knowledge

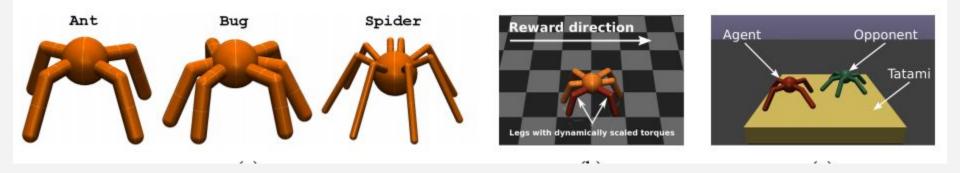
AlphaZero: One Algorithm, Three Games

3D Worlds



Bansal et al. '18

Meta-Learning in RoboSumo



Al-Shedivat et al. '17

Emergent Coordination Through Competition

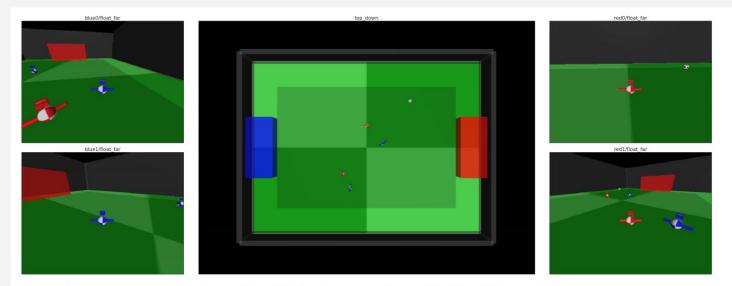


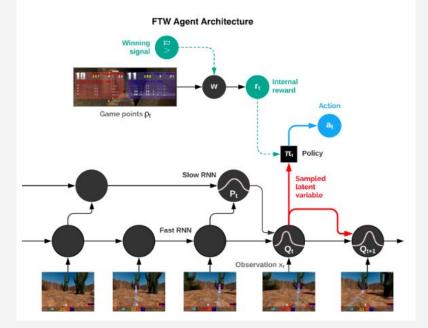
Figure 1: Top-down view with individual camera views of 2v2 multi-agent soccer environment.

Liu et al. '19 and http://git.io/dm_soccer

Capture-the-Flag (Jaderberg et al. '19)

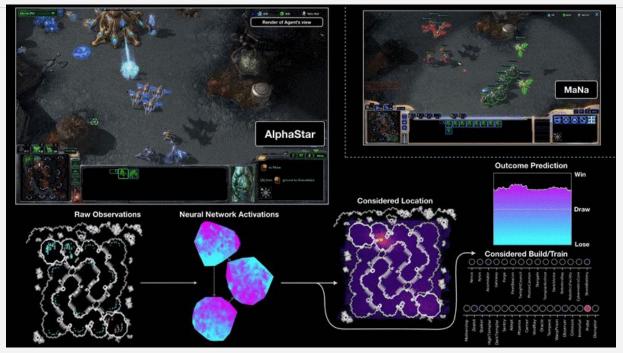
Agent observation raw pixels

Outdoor map overview



https://deepmind.com/blog/capture-the-flag-science/

AlphaStar (Vinyals et al. '19)



https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Dota 2: OpenAl Five

https://openai.com/blog/openai-five-finals/

Deep Multiagent RL Survey

Is multiagent deep reinforcement learning the answer or the question? A brief survey

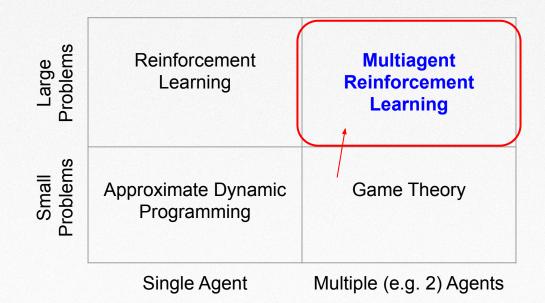
Pablo Hernandez-Leal, Bilal Kartal and Matthew E. Taylor {pablo.hernandez,bilal.kartal,matthew.taylor}@borealisai.com

Borealis AI University of Alberta CCIS 3-232 Edmonton, Canada

https://arxiv.org/abs/1810.05587

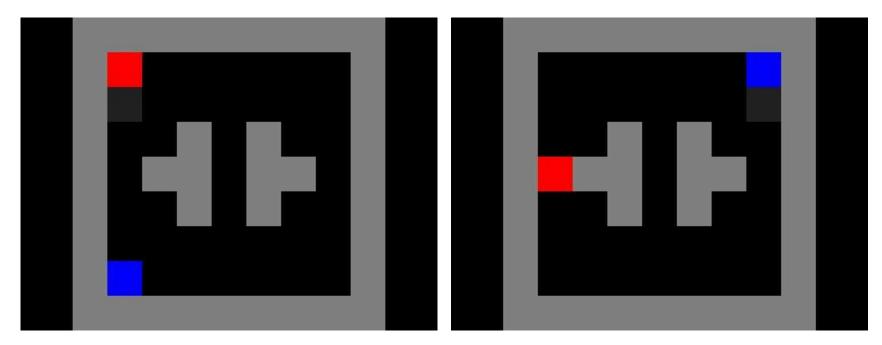
Part 4: Partial Observability

Foundations of Multiagent RL





Independent Deep Q-networks (See Lanctot et al. '17)



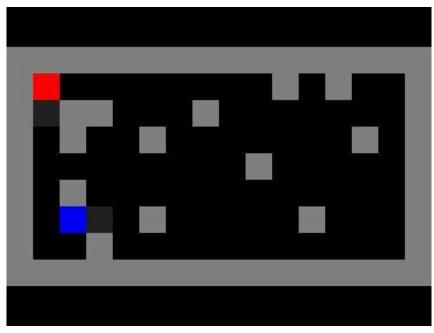
https://www.youtube.com/watch?v=8vXpdHuoQH8

Independent learners who learned together

https://www.youtube.com/watch?v=jOjwOkCM_i8

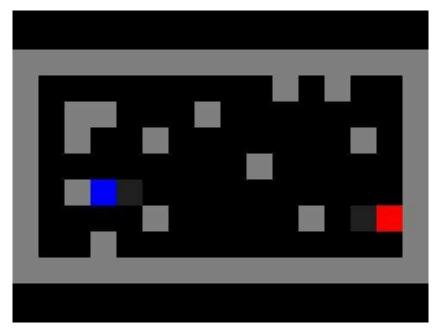
Independent learners who learned using the same algorithm, same architecture, same hyperparameters, but different seed

Independent Deep Q-networks (See Lanctot et al. '17)



https://www.youtube.com/watch?v=Z5cpIG3GsLw

Independent learners who learned together



https://www.youtube.com/watch?v=zilU0hXvGK4

Independent learners who learned using the same algorithm, same architecture, same hyperparameters, but different seed

Fictitious Self-Play [Heinrich et al. '15, Heinrich & Silver 2016]

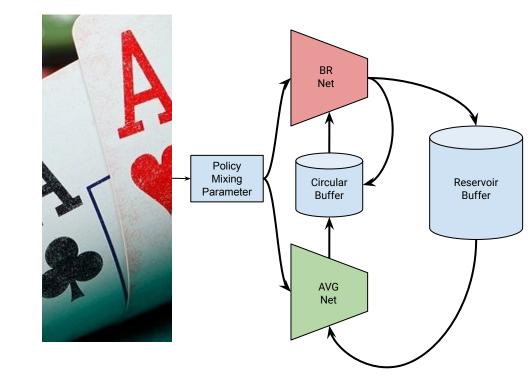
- Idea: Fictitious self-play (FSP) + reinforcement learning
- Update rule in sequential setting *equivalent* to standard fictitious play (matrix game)
- Approximate NE via two neural networks:

1. Best response net (BR):

- Estimate a best response
- \circ Trained via RL

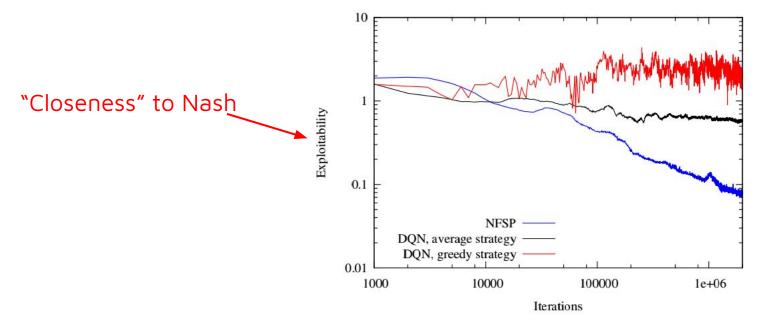
2. Average policy net (AVG):

- Estimate the time-average policy
- Trained via supervised learning



Neural Fictitious Self-Play [Heinrich & Silver 2016]

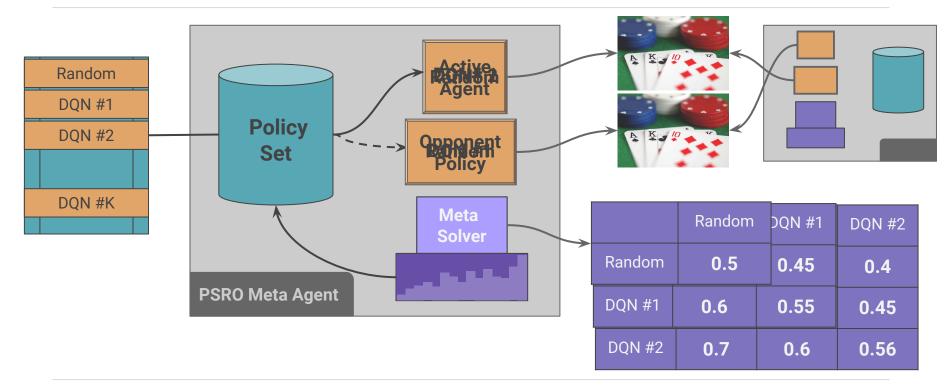
• Leduc Hold'em poker experiments:



- 1st scalable end-to-end approach to learn approximate Nash equilibria w/o prior domain knowledge
 - Competitive with superhuman computer poker programs when it was released

DeepMind

Policy-Space Response Oracles (Lanctot et al. '17)



Quantifying "Joint Policy Correlation"

In RL:

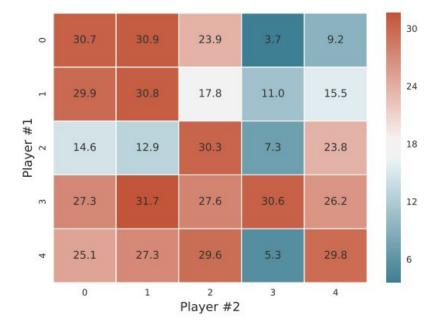
- Each player uses optimizes independently
- After many steps, joint policy (π_1 , π_2) co-learned for players 1 & 2

Computing **JPC:** start **5 separate instances of the** *same experiment*, with

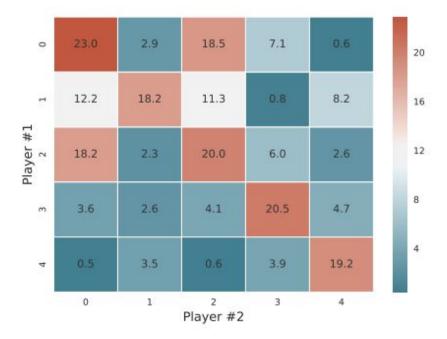
- Same hyper-parameter values
- Differ *only* by seed (!)
- Reload all 25 combinations and play π_1^{i} with π_2^{j} for instances i, j

Joint Policy Correlation in Independent RL

InRL in small2 (first) map



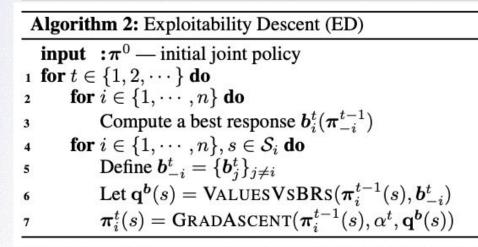
InRL in small4 map



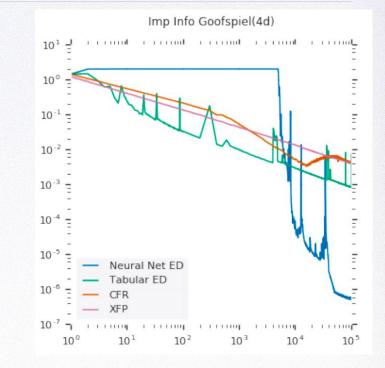
JPC Results - Laser Tag

Game	Diag	Off Diag	Exp. Loss
LT small2	30.44	20.03	34.2 %
LT small3	23.06	9.06	62.5 %
LT small4	20.15	5.71	71.7 %
Gathering field	147.34	146.89	none
Pathfind merge	108.73	106.32	none

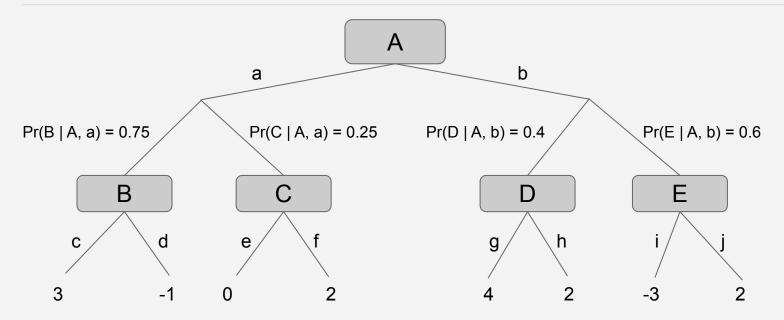
Exploitability Descent (Lockhart et al. '19)



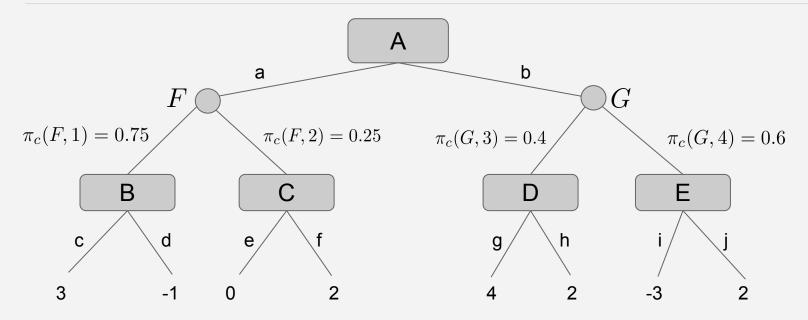
- A FP-like algorithm conv. without averaging!
- Amenable to function approximation



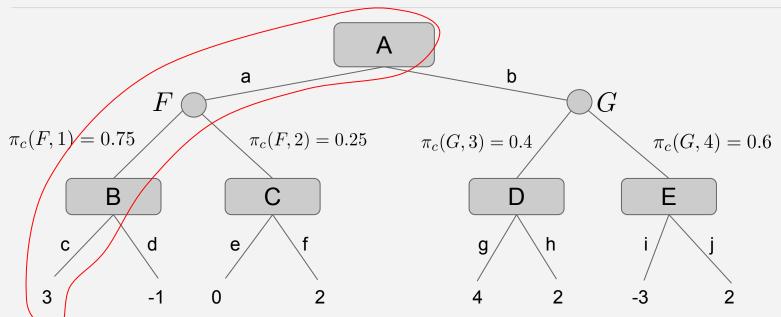
A simple MDP



A simple MDP Multiagent System

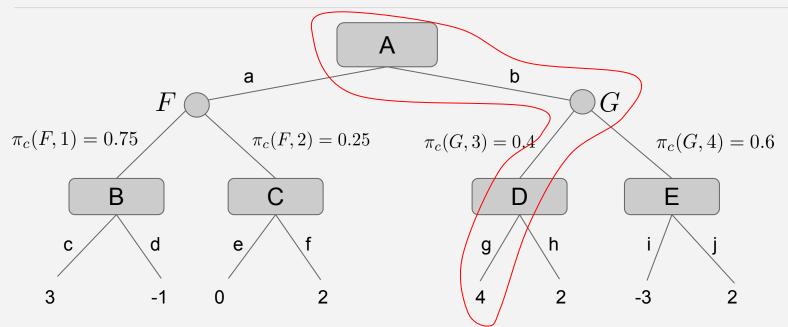


Terminal history A.K.A. Episode



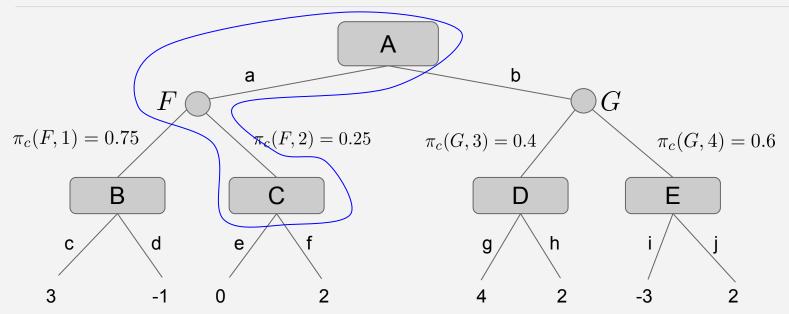
(A, a, F, 1, B, c) is a *terminal* history.

Terminal history A.K.A. Episode



(A, a, F, 1, B, c) is a terminal history. (A, b, G, 3, D, g) is a another terminal history.

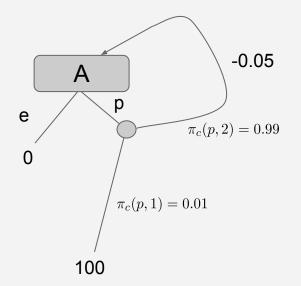
Prefix (non-terminal) Histories



(A, a, F, 2, C) is a history. It is a *prefix* of (A, a, F, 2, C, e) and (A, a, F, 2, C, f).

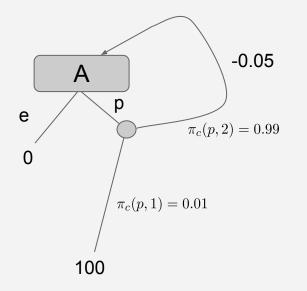
Perfect Recall of Actions and Observations

Another simple MDP:

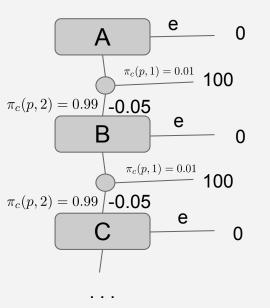


Perfect Recall of Actions and Observations

Another simple MDP:



A different MDP:

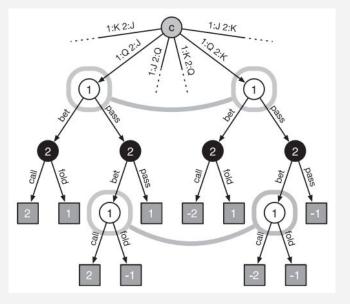


Partially Observable Environment

An information state is a set of histories consistent with an agent's observations.

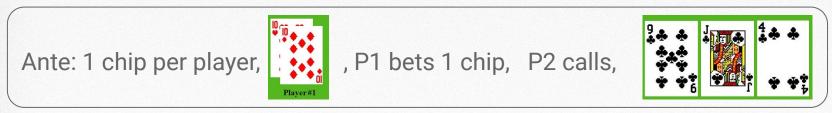
3-card Poker deck:

Jack, Queen, King



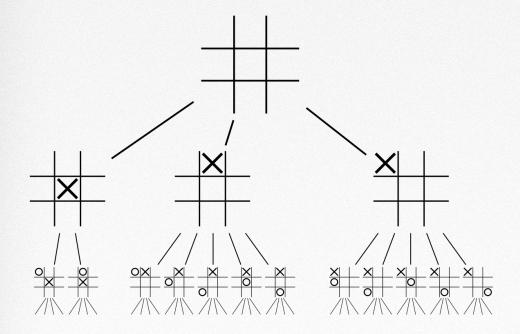
- An **information state** s corresponds to sequence of observations
 - with respect to the player to act at s

Example information state in Poker:



Environment is in one of many **world/ground states** $h \in s$

Recall: Turn-Taking Perfect Information Games



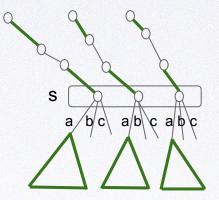
\rightarrow Exactly one history per information state!

Presentation Title - SPEAKER

{Q,V}-values and Counterfactual Values

What..... is a counterfactual value?

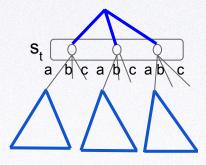
 $v_i^c(\pi, s, a)$



The portion of the expected return (under s) from the start state, given that:

player i plays to reach information state s (then plays a).

What..... is a q-value?



$q_{\pi,i}(s_t, a_t) = \mathbb{E}_{\rho \sim \pi}[G_t \mid S_t = s_t, A_t = a_t]$

All terminal histories z reachable from s, paired with their prefix histories ha, where h is in s

 $h, z \in \mathcal{Z}(s_t, a_t)$

Reach probabilities: product of all policies' state-action probabilities along the portion of the history between ha and z

 $\Pr(h \mid s_t)\eta^{\pi}(ha, z)u_i(z)$

Return achieved over terminal history z

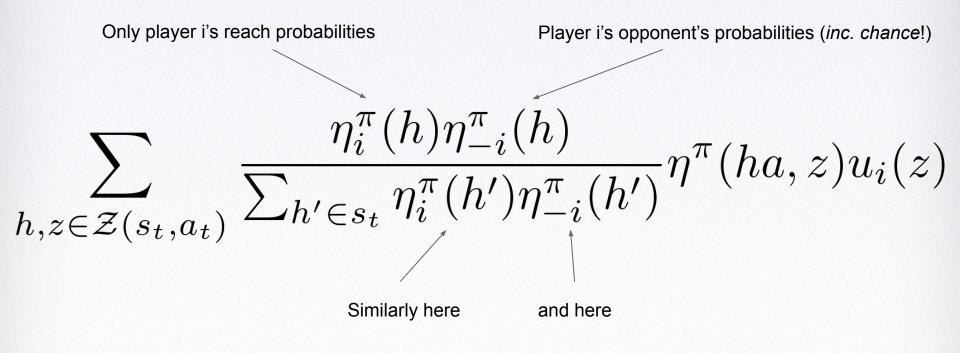
$$\sum_{\substack{h,z\in\mathcal{Z}(s_t,a_t)}} \frac{\Pr(s_t\mid h)\Pr(h)}{\Pr(s_t)} \eta^{\pi}(ha,z) u_i(z)$$

By Bayes rule

 $= \sum_{h,z \in \mathcal{Z}(s_t,a_t)} \frac{\Pr(h)}{\Pr(s_t)} \eta^{\pi}(ha,z) u_i(z)$

Since h is in s_t and h is unique to s_t

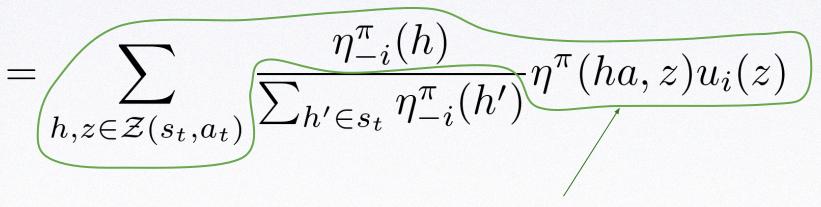
$$\sum_{h,z\in\mathcal{Z}(s_t,a_t)}\frac{\eta^{\pi}(h)}{\sum_{h'\in s_t}\eta^{\pi}(h')}\eta^{\pi}(ha,z)u_i(z)$$



$$\sum_{h,z\in\mathcal{Z}(s_t,a_t)} \frac{\eta_i^{\pi}(h)\eta_{-i}^{\pi}(h)}{\eta_i^{\pi}(h)\sum_{h'\in s_t}\eta_{-i}^{\pi}(h')} \eta^{\pi}(ha,z)u_i(z)$$

Due to perfect recall (!!)

 $=\sum_{h,z\in\mathcal{Z}(s_t,a_t)}\frac{\eta_{-i}^{\pi}(h)}{\sum_{h'\in s_t}\eta_{-i}^{\pi}(h')}\eta^{\pi}(ha,z)u_i(z)$



This is a counterfactual value!

$$= \frac{1}{\sum_{h \in s_t} \eta_{-i}^{\pi}(h)} v_i^c(\pi, s_t, a_t)$$

$$= \frac{1}{\mathcal{B}_{-i}(\pi, s_t)} v_i^c(\pi, s_t, a_t)$$

For full derivation, see Sec 3.2 of Srinivasan et al. '18

Yeah.. so....?

ヽ_(ツ)_/

Counterfactual Regret Minimization (CFR)

Zinkevich et al. '08

- Algorithm to compute approx
 Nash eq. In 2P zero-sum games
- Hugely successful in Poker Al
- Size traditionally reduced apriori based on expert knowledge
- Key innovation: counterfactual values: $v_i^c(\pi,s,a) = v_i^c(\pi,s)$

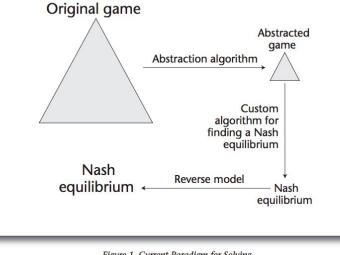


Figure 1. Current Paradigm for Solving Large Incomplete-Information Games.

Image form Sandholm '10

CFR is policy iteration!

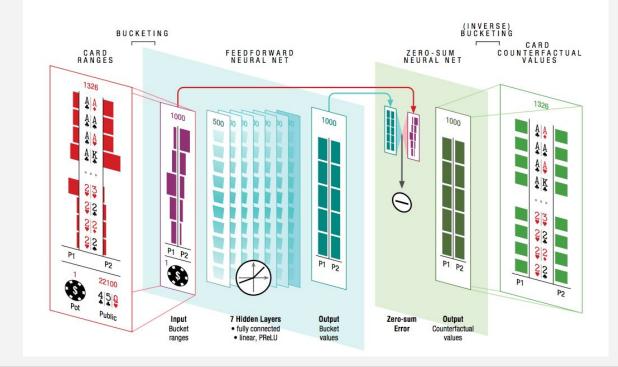
- Policy evaluation is analogous
- Policy improvement: use regret minimization algorithms
 - Average strategies converge to Nash in self-play
- Convergence guarantees are on the average policies

(Moravcik et al. '17)



Figure 2: DeepStack overview. (a) DeepStack re-solves for its action at every public state it is to act, using a depth limited lookahead where subtree values are computed using a trained deep neural network (b) trained before play via randomly generated poker situations (c).

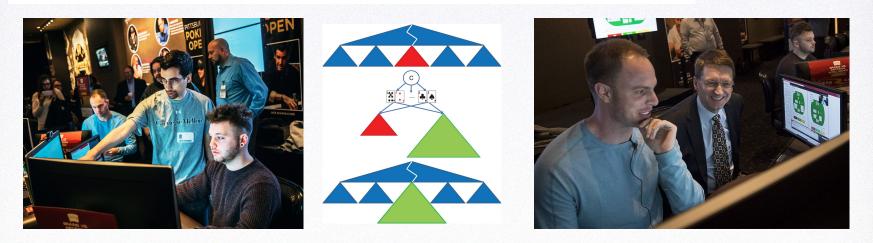
(Moravcik et al. '17)



Libratus (Brown & Sandholm '18)

RESEARCH ARTICLE

Superhuman AI for heads-up no-limit poker: Libratus beats top professionals



Policy Gradient Algorithms

Parameterized policy π_{θ} with parameters θ (e.g. a neural network) Define a score function $J(\pi_{\theta}) = v_{\pi}(s_0) = \mathbb{E}_{\pi}[G_0]$

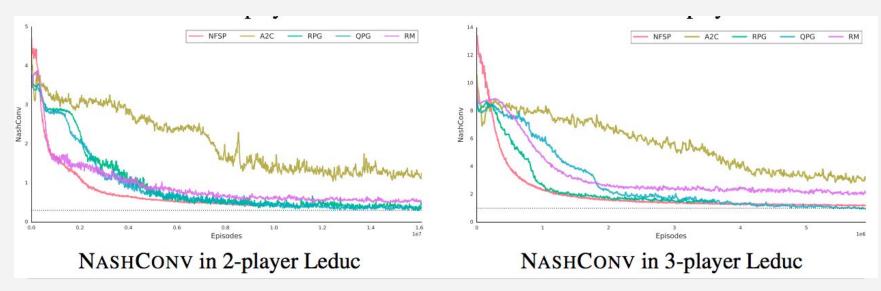
Main idea: do gradient ascent on J.

- 1. **REINFORCE** (Williams '92, see RL book ch. 13) + PG theorem: you can do this via estimates from sample trajectories.
- 2. Advantage Actor-Critic (A2C) (Mnih et al '16): you can use deep networks to estimate the policy *and* baseline value v(s)



Regret Policy Gradients (Srinivasan et al. '18)

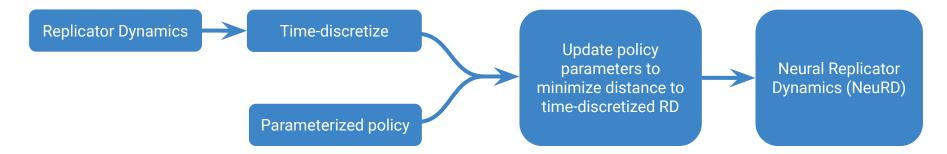
- Policy gradient is doing a form of CFR minimization!
- Several new policy gradient variants inspired connection to regret



DeepMind

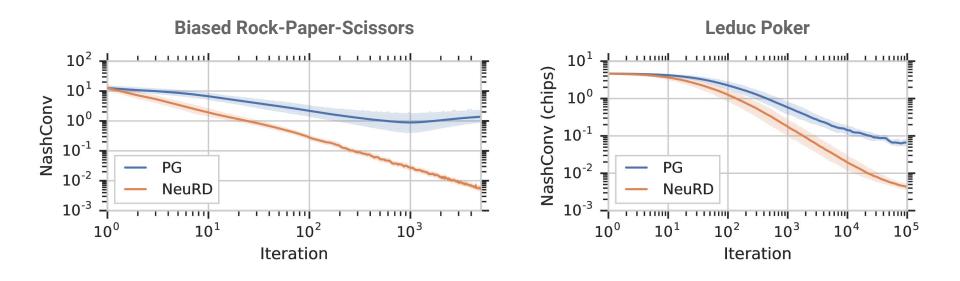
Neural Replicator Dynamics (NeuRD)

Omidshafiei, Hennes, Morrill et al. '19



$$\begin{aligned} \boldsymbol{\theta}_t &= \boldsymbol{\theta}_{t+1} + \eta \sum_{s,a} \nabla_{\boldsymbol{\theta}} y_{t-1}(s_t, a_t; \boldsymbol{\theta}) A(s_t, a_t; \boldsymbol{\theta}, \boldsymbol{w}) \\ & \underset{\pi = softmax(\boldsymbol{y})}{\text{Advantage q(s,a)-v(s)}} \end{aligned}$$

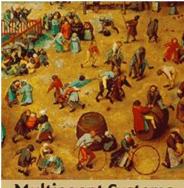
NeuRD: Results



Where to Go From Here?

Shoham & Leyton-Brown '09

Main Page Table of Contents Instructional Resources Errata eBook Download new!



Multiagent Systems

YOAV SHOHAM KEVIN LEYTON-BROWN

Comments.

Multiagent Systems Algorithmic, Game-Theoretic, and Logical Foundations

Yoav Shoham Stanford University Kevin Leyton-Brown University of British Columbia

Cambridge University Press, 2009 Order online: amazon.com.

masfoundations.org

Surveys and Food for Thought

- If multi-agent learning is the answer, what is the question?
 - Shoham et al. '06
 - Hernandez-Leal et al. '19
- A comprehensive survey of MARL (Busoniu et al. '08)
- Game Theory and Multiagent RL (Nowé et al. '12)
- Study of Learning in Multiagent Envs (Hernandez-Leal et al. '17)

The Hanabi Challenge

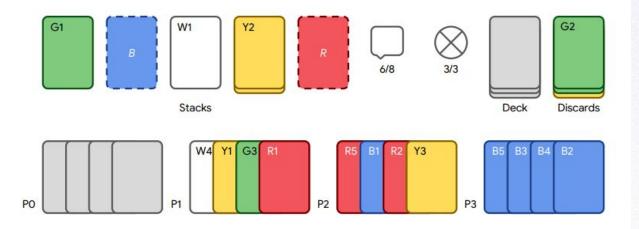
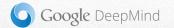


Figure 1: Example of a four player Hanabi game from the point of view of player 0. Player 1 acts after player 0 and so on.

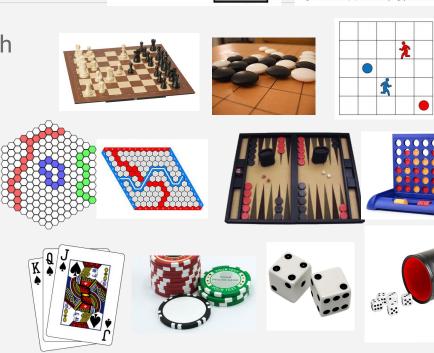
Bard et al. '19

Also Competition at IEEE Cog (ieee-cog.org)



OpenSpiel: Coming Soon!

- Open source framework for research in RL & Games
- C++, Python, and Swift impl's
- 25+ games
- 10+ algorithms
- Tell all your friends! (Seriously!)



B (A)

initial board (left) and a situation requiring a probabilistic choi

AAAI 2020 Workshop on RL in Games?

AAAI19-RLG Summary:

- 39 accepted papers
 - 4 oral presentations
 - 35 posters
- 1 "Mini-Tutorial"
- 3 Invited Talks
- Panel & Discussion

http://aaai-rlg.mlanctot.info/

Marc Lanctot

lanctot@google.com

mlanctot.info/

(Please contact me if you have trouble finding any references!)

