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Part 1: What is MARL?



Multiagent Reinforcement Learning

pommerman . com Laser Tag
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http://www.youtube.com/watch?v=Z5cpIG3GsLw

Multiagent Reinforcement Learning
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Traditional (Single-Agent) RL
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Multiagent Reinforcement Learning
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Motivations: Research in Multiagent RL
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@ DeepMind

Large
Problems

Approximate

Approximate

Small
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Solution Solution
Methods Methods
Tabular Tabular
Solution Solution
Methods Methods

Single Agent Multiple (e.g. 2) Agents

Motivations: Research in Multiagent RL
Sutton & Barto ‘98, ‘18
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Motivations: Research in Multiagent RL

First era of multiagent RL
0 Approximate Approximate
= E Solution Solution
© -8 Methods Methods
o
» Tabular Tabular
o E Solution Solution
UE) g Methods //' Methods
o

Single Agent
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Multiple (e.g. 2) Agents

Presentation Title — SPEAKER



Motivations: Research in Multiagent RL
Multiagent Deep RL era (‘16 - now)

g Approximate Approximate
o Solution = —— Solution
> O
© 9 Methods ™ Methods
—I [ .

o

% Tabular Tabular
T E Solution Solution
S g Methods Methods

o

Single Agent Multiple (e.g. 2) Agents
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@ DeepMind

Motivations: Research in Multiagent RL

Large
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Talk focus
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@ DeepMind

Motivations: Research in Multiagent RL
My 10-year mission

Large
Problems

Small
Problems

Approximate

Approximate

Solution Solution
Methods Methods
Tabular Tabular
Solution Solution
Methods Methods
N /
NG B
Single Agent Multiple (e.g. 2) Agents
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Important Historical Note

If multi-agent learning is the answer,
what is the question?

Yoav Shoham, Rob Powers, and Trond Grenager
Stanford University
{shoham, powers,grenager}@cs.stanford.edu

February 15, 2006
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Artificial Intelligence, Volume 171, Issue 7

Foundations of multi-agent learning: Introduction to the special issue
Rakesh V. Vohra, Michael P. Wellman

Pages 363-364

An economist's perspective on multi-agent learning
Drew Fudenberg, David K. Levine
Pages 378-381

Perspectives on multiagent learning
Tuomas Sandholm

Pages 382-391

@ DeepMind
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Artificial Intelligence, Volume 171, Issue 7

Agendas for multi-agent learning
Geoffrey J. Gordon
Pages 392-401

Multiagent learning is not the answer. It is the question
Peter Stone

Pages 402-405

What evolutionary game theory tells us about multiagent learning
Karl Tuyls, Simon Parsons

Pages 406-416
@ DeepMind
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Artificial Intelligence, Volume 171, Issue 7

Multi-agent learning and the descriptive value of simple models
Ido Erev, Alvin E. Roth

Pages 423-428

The possible and the impossible in multi-agent learning
H. Peyton Young

Pages 429-433

No regrets about no-regret
Yu-Han Chang

Pages 434-439
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Artificial Intelligence, Volume 171, Issue 7

A hierarchy of prescriptive goals for multiagent learning

Martin Zinkevich, Amy Greenwald, Michael L. Littman
Pages 440-447

Learning equilibrium as a generalization of learning to optimize
Dov Monderer, Moshe Tennenholtz
Pages 448-452

@ DeepMind
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Some Specific Axes of MARL

Centralized:
e One brain / algorithm deployed across many agents
Decentralized:

e All agents learn individually

e Communication limitations defined by environment
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Some Specific Axes of MARL

Prescriptive:
e Suggests how agents should behave
Descriptive:

e Forecast how agent will behave
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Some Specific Axes of MARL

Cooperative:
Competitive:

Neither:

@ Google DeepMind

Agents cooperate to achieve a goal
Agents compete against each other
Agents maximize their utility which may

require cooperating and/or competing

General Artificial Intelligence



Our Focus Today

1. Centralized training for decentralized execution
(very common)
2. Mostly prescriptive

3. Mostly competitive; sprinkle of cooperative and neither
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Part 2: Foundations &
Background



Shoham & Leyton-Brown ‘09

Main Page Table of Contents Instructional Resources FErrata eBook Download™"’

Multiagent Systems

Algorithmic, Game-Theoretic, and Logical Foundations

Yoav Shoham

Stanford University

Kevin Leyton-Brown
University of British Columbia

Multiagent Systems
e D AR

YOAV SHOHAM
KEVIN LEYTON-BROWN Cambridge University Press, 2009

Order online: amazoncom

masfoundations.org
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http://masfoundations.org/

Foundations of (MA)RL

e Reinforcement Multiagent
o) : :
SR Learning Reinforcement
© 8 .
a9 Learning

o

(72}
T 5 Approximate Dynamic Game Theory
5 g Programming

o

J

Single Agent Multiple (e.g. 2) Agents
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@ DeepMind

Large
Problems

Small
Problems

Foundations of Multiagent RL

Reinforcement Multiagent
Learning Reinforcement
Learning
~ ~N
Approximate Dynamic Game Theory

Programming

N

S

Single Agent

Multiple (e.g. 2) Agents
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@ DeepMind

Biscuits vs Cookies

A Note on Terminology

Player

Game

Strategy

Best Response
Utility

State

Agent

Environment
Policy

Greedy Policy
Reward
(Information) State
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Normal-form “One-Shot” Games
e Setofplayers § € N = {1,2, = ,TL}
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Normal-form “One-Shot” Games

e Setofplayers 7 € AN - {1,2, £ ,n}
e Each player has set of actions Az - {al, gy, ... }
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Normal-form “One-Shot” Games

e Set of players 1 EN:{1,2,°'- ,n}
e Each player has set of actions Az - {0,1, gy, ... }
e Set of joint actions ,A = Al X Ag e e X An
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Normal-form “One-Shot” Games

e Set of players iEN:{l,Q,--- ,n}

e Each player has set of actions Az - {a,l, gy, ... }
e Set of joint actions ,A = Al X AQ 2K 3 An
e A utility function U : NxA->SU & R

'Q Goog[e DeepMind General Artificial Intelligence



Example: (Bi-)Matrix Games (n=2)

column player

A B

a 0,0 1,-1

row player

b S 0,0
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Example: (Bi-)Matrix Games (n=2)

column player

actions
\@ B
a 0,0 ey

row player
s b S 0,0
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Example: (Bi-)Matrix Games (n=2)

column player

A B

a 0,0 @

1
row player b p /0 >

:

utility to row player
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Example: (Bi-)Matrix Games (n=2)

column player
utility to column player

A

B
a 0,0 @@/
0

row player b o / .

:

utility to row player
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Example: (Bi-)Matrix Games (n=2)

column player
utility to column player

A

a 0,0 @@/

row player b p /0 -

:

utility to row player

for joint action (a,B)
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Normal-form “One-Shot” Games

e Set of players iEN:{l,Q,--- ,n}

e Each player has set of actions Az - {a,l, gy, ... }
e Set of joint actions _A = Al X .AQ 2K 3 .An
e A utility function U : NxA->U & R

Each player: 77; & A(.Az), maximize [, - [UZ(CL)]
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Normal-form “One-Shot” Games

e Set of players iEN:{l,Q,--- ,n}

e Each player has set of actions Az - {a,l, gy, ... }
e Set of joint actions _A = Al X .AQ 2K 3 .An
e A utility function U : NxA->U & R

Each player: 77; & A(AZ), maximize ﬂm@[ui(a)]

Problem! This is a joint policy J
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Best Response

Suppose we are player 7 and we fix policies of other players
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Best Response

Suppose we are player 4 and we fix policies of other players ( —i = N — {i})
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Best Response

Suppose we are player 7 and we fix policies of other players (—i=N—1{i})

T € A(A;), maximize E,r|u;(a)]
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Best Response

Suppose we are player ¢ and we fix policies of other players ( —i = N/ — {i})

m; € A(A;), maximize

Carm [Uia)]

i < BR(T‘-—’L) 7 ui(ﬂ-ia 7T—7l) . man;EaN(wé,w_i)[ui(a)]

b Google DeepMind

General Artificial Intelligence



Best Response

Suppose we are player ¢ and we fix policies of other players ( —i = N/ — {i})

m; € A(A;), maximize

Carm [Uia)]

i < BR(T‘-—’L) 7 ui(ﬂ-ia 7T—7l) . man;EaN(wé,w_i)[ui(a)]

7T; isabestresponseto 7T _;

b Google DeepMind
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Solving a Matrix Game

column player

A B

a 0,0 1,-1

row player b o s
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Solving a Matrix Game

column player

A B
a 0,0 s
row player -
b b -1, 1 (0, 0 } Let's start here
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Solving a Matrix Game

row player

@ Google DeepMind

column player

A

B

Both players have incentive to deviate
(assuming the opponent stays fixed)

General Artificial Intelligence



Solving a Matrix Game

column player

A B

a 0,0 1,-1

S s

row player b ﬂ 1 ) s
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Solving a Matrix Game

column player

A B

a 0,0 1,-1

row player b 2 \ i
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Solving a Matrix Game

row player

@ Google DeepMind

column player

A B
AN

0,0 1, -1
-1,1 0,0

(a,A) is a fixed point of this process

General Artificial Intelligence



Solving a Matrix Game

column player

A B
S GaRN
. @ L A) is a fixed point of thi
row player (a,A) is a fixed point of this process
b S 0,0

7 € A(A;), maximize E, . [u;(a)]
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Let's Try Another....

column player

A B

a e -1, 1

row player
L b S 1, -1
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Let's Try Another....

column player

A B

row player
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Nash equilibrium

A Nash equilibrium is a joint policy /T such that no player has incentive to

deviate unilaterally.
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Nash equilibrium: A Solution Concept

A Nash equilibrium is a joint policy /T such that no player has incentive to

deviate unilaterally.

Vi € N, M BR(T('_Z)

'Q Goog[e DeepMind General Artificial Intelligence



Some Facts

e Nash equilibrium always exists in finite games

e Computing a Nash eq. is PPAD-Complete
o One solution is to focus on tractable subproblems
o Another is to compute approximations

e Assumes players are (unbounded) rational

e Assumes knowledge:
o Utility / value functions

o Rationality assumption is common knowledge
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Two-Player Zero-Sum Games

Matching Pennies: %1(:) = —ua(+)
column player

A B

a e -1, 1

row player

b S 1, -1
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Two-Player Zero-Sum Games

Matching Pennies: %1(:) = —ua(+)

column player max V
A B
1 1.1
row player b - =

6 Goog[e DeepMind General Artificial Intelligence



Two-Player Zero-Sum Games

Matching Pennies: %1(:) = —ua(+)

column player max V
A B w(a) —w(b) >V (vs. A)
1 1.1

row player b - =
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Two-Player Zero-Sum Games

Matching Pennies: u1() = —U2(°)
column player LS V
A B W(a) oo 7T(b) Z V (VS. A)
1. -1 1.1 —7T(CL)—|—7T(b)ZV (VS. B)
row player b o o
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Two-Player Zero-Sum Games

Matching Pennies: u1() = —U2(°)
column player LS V
A B w(a) —nw(b) >V (vs. A)
1. -1 1.1 —7T(CL)—|—7T(b)ZV (VS. B)
row player
bl 1 1,1 m(a) + w(b) =

b Google DeepMind General Artificial Intelligence



Best Response Condition

For any (possibly stochastic) joint policy 7T _; ,

There exists a deterministic best response:

777{? € BR(m_;)
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Best Response Condition

For any (possibly stochastic) joint policy 7T _; ,

There exists a deterministic best response:
%, € BHim ;)

Proof: Assume otherwise. The values of each deterministic policy (action) must

be the same, by def. of BR. Then we can put full weight on any of them.

'Q Google DeepMind General Artificial Intelligence



Two-Player Zero-Sum Games

Matching Pennies: u1(+) = —ug (")

column player max V
A B w(a) —w(b) >V (vs. A)
1 . —n(a) +7() >V (vs. B)
row player b 1,1 1, -1 7T(CL L 7T<b) -
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This is a Linear Program!

e Solvable in polynomial time (!)
o Easy to apply off-the-shelf solvers
e Will find one solution

e Matching Pennies: 7(a) = w(b) =

6 Google DeepMind General Artificial Intelligence



Minimax

Max-min: P1 looks for a 777 such that

v1 = max min w1 (7, m2)
71 1o

Min-max: P1 looks for a 771 such that

v1 = min max uy (7w, m2)
Y] 71

In two-player, zero-sum these are the same!

John von Neumann 1928 ---> The Minimax Theorem

b DeepMind



Consequences of Minimax

The optima T = (WT, W;)
e These exist! (They sometimes might be stochastic.)

e (alles a minimax-optimal joint policy. Also, a Nash equilibrium.

e They are interchangeable:
/ / /
Vﬂ'*, = (7Tik, 7'('%< ), (7'('1< ; 7T§) also minimax-optimal

e Each policy is a best response to the other.

b DeepMind



Normal Form Games: Algorithms

e Fictitious Play:
e Start with an arbitrary policy per

1 2
0 player (', m,),

R',R?

c DeepMind Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e Fictitious Play:

Ve

Vi

@ DeepMind

0

1 1 1
BR', BR', BR,

1

R',R?

Start with an arbitrary policy per

player (' ,m ),

o Then, play best response
against a uniform distribution
over the past policy of the

1 2
opponent (BR' BR- ).

Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e Fictitious Play:

@ DeepMind

Ve
Ve

Vi

Start with an arbitrary policy per

player (' ,m ),

o Then, play best response
against a uniform distribution
over the past policy of the

1 2
opponent (BR' BR- ).

Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, O, 0), (1, O, 0O)

c DeepMind Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, O, 0), (1, O, 0)
e |teration 1:
R P o BR',BR*> =P P
R|o 1 o (%, %, 0), (A, ', O)
P|-1 0

@ DeepMind Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, O, 0), (1, O, 0O)

e Iteration 1:

R P P o BR',BR* =P, P
R|o 1 1 o (%, "%, 0), ("2, %, O)
P 1 0 O e |[teration 2:

P|l-1 0 0

o BR',BR* =P,P
o (%, %, 0), (5, %, 0O)

6 DeepMind Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e Fictitious Play:

@ DeepMind

R P P S
RJ10 1 1 -1
P -1 0 0 1
P -1 0 0 1
S 1 -1 -1 0

Start with (R, P, S)= (1, O, 0), (1, O, O)

lteration 1:

o BR',BR* =P P

o (%, a, 0), (A, A, O)
lteration 2:

1 2 _
o BRZ,BRZ—P,P
o (Y%, %5, 0), (4, %, O)
lteration 3:

1 2 _
o BR3,BR3—S,S

©)

(Va,%2,%a), (Va,Y2,Y4)

Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e Fictitious Play:

@ DeepMind

R P P S S
R10 1 1 -1 41
P -1 0 0 1 1
P -1 0 0 1 1
S 1 -1 -1 0 O
S 1 -1 1 0 O

Start with (R, P, S)= (1, O, 0), (1, O, O)

lteration 1:
o BR',BR* =P P
o (%, a, 0), (A, A, O)
lteration 2:
1 2 _
o BR 2,BR , = P, P
o (%, %, 0), (4, %5, O)
lteration 3:
1 2 _
o BR 3,BR , = S, S
O ('/4,'/2,1/4), ('/4,'/2,'/4)

Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e double oracle [HB McMahan 2003]:

1

m
C e Start with an arbitrary policy per
I I
Q% 9% Q% player (' ,m?% ),
”10 BR11 BR12 BR13 o Compute (p",q") by solving
pzo ”20 the game at iteration n
2 2 o Then, best response against
1T22 P BRY | = f -
2 BR? R' R2 (p",q") and get a new best
2 1. response (BR' BR' ).
2
BRZ,
@ DeepMind
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Normal Form Games: Algorithms

e Start with (R, P, S)= (1, O, 0), (1, O, O)
e double oracle:

c DeepMind Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e Start with (R, P, S)= (1, O, 0), (1, O, O)
e double oracle:
e |[teration 1:

o BR'.BR? =P, P

R P
o Solve the game : (O, 1, 0), (O, 1,
R|o0o 1
0)
P -1 0

@ DeepMind Multi-Agent Learning Tutorial



Normal Form Games: Algorithms

e double oracle:

6 DeepMind

Start with (R, P, S)= (1, O, 0O), (1, O, O)

Iteration 1:

o BR'.BR? =P, P

o Solve the game : (O, 1, 0), (O, 1,
0)

Iteration 2:

o BR,,BR%L =S,S

o (%A, ', 5, (Y5, 5, A)

Multi-Agent Learning Tutorial



Cooperative Games

ui(-) = u;(-)

column player

A B &
a4 0,0 0,0
row player Lo . =
cl| 00 0,0 5,5

@ Google DeepMind
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Cooperative Games
wi(-) = u ()
column player

A B C

row player
e b 0o @ 0,0
=0 0,0 @

These are all Nash equilibria!
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General-Sum Games

No constraints on utilities!

row player

@ Google DeepMind

column player

A B
3,2 0,0
0,0 2.3

General Artificial Intelligence



The Sequential Setting: Extensive-Form Games

What about sequential games...?
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Perfect Information Games

.

X X

X
o

(6] O OX X X X X
[¢]

\W\

X

X X (0] [e]
(¢]

NN INNIIN NN NN NN N

b DeepMind



(Finite) Perfect Information Games: Model

e Start with an episodic MDP
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(Finite) Perfect Information Games: Model

e Start with an episodic MDP Simultaneous move node (many players
e Add a player identity function: play simultaneously)

7(s) € N U {s}

@ DeepMind Presentation Title — SPEAKER



(Finite) Perfect Information Games: Model

e Start with an episodic MDP
e Add a player identity function:

7(s) € N U {s}

e Define rewards per player:

ri(s,a,s’) fori e N
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(Finite) Perfect Information Games: Model

e Start with an episodic MDP
e Add a player identity function:

7(s) € N U {s}

e Define rewards per player:

ri(s,a,s’) fori e N

e (Similarly for returns: Gt,i is the return to player i from S¢ )

'g DeepMind Presentation Title — SPEAKER



Part 3: Basic Formalisms &
Algorithms



Foundations of RL

e Reinforcement Multiagent
o) : :
o % Learning Reinforcement
see Learning

- f

. I
T 5 Approximate Dynamic Game Theory
5 g Programming

o

Single Agent Multiple (e.g. 2) Agents
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Backward Induction

Solving a turn-taking perfect

information game

52 4,4
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Backward Induction

Solving a turn-taking perfect

information game

52 4,4
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Backward Induction

Solving a turn-taking perfect

information game
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Backward Induction

Solving a turn-taking perfect

information game
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Intro to RL: Tabular Approximate Dyn. Prog.

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 87)

Repeat
A+0
For each s € 8:
v+ V(s)
V(s) < max, ) . ,.p(s',r|s,a) [7' - 'yV(s')]
A + max(A, v —V(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, 7 = m,, such that
m(s) = argmax, ), . p(s',7|s,a) [1' + 'yV(s')]

b DeepMind



Turn-Taking 2P Zero-sum Perfect Info. Games

Player to play at s: 7(s)

Reward to playeri: T°;

Subset of legal actions LEGALACTIONS(s)
Often assume episodicand v =1

Values of a state to player i: ‘/; (S)
|dentities:

Vs,a,s i1 = —rg, Vi(s) = —Vs(s)

b DeepMind



2P Zero-Sum Perfect Info. Value lteration

Initialize array V, arbitrarily (e.g., V/(s) =0 for all s € 87)

i

Repeat

R0 Let i = t(s)
For each s € 8:

v Vo)
Vi(s) < max, 3=, . p(s's 7|5, @) [, + yVi(s')]
A + max(A, v — Vi(s)[)

until A < 6 (a small positive number)

i =tfs)
Output a deterministic policy, © =~ m,, such tha‘g/
7r(3) = argmax, Zs',y;.p(s” 71"I3a a’) [Tz+ ’7‘{(3,)]

b DeepMind



Minimax

A.K.A. Alpha-Beta, Backward Induction, Retrograde Analysis, etc...

Start from search state S,

Compute a depth-limited approximation: L = . T o
u;i(s) if s is terminal, £ sy /\
Via(s) = q hi(s) if d =0, e e APl
Zs/ p(s,a, 8/)‘/@',d—1(8/) otherwise. x'l . l '
---> Minimax Search ank

b DeepMind




Two-Player Zero-Sum Policy Iteration

e Analogous to adaptation of value iteration EHELED i .
e Foundation of AlphaGo, AlphaGo Zero, AlphaZero o L%@
o Better policy improvement via MCTS " "
. . Move
o Deep network func. approximation orobabilities Evaluation

m Policy prior cuts down breadth

m Value network cuts the depth




2P Zero-Sum Games with Simultaneous Moves

Min
3
MaZ 0.5 \
2 0 0 1
[3 4\ 1 0
2 3 4 0

Image from Bozansky et al. 2016


https://www.sciencedirect.com/science/article/abs/pii/S0004370216300285

Markov Games

“Markov Soccer”

(z,ll,,___ Defensive Offensive
AT ®) Lo w/ball Avoid  Advance
R . @ 4) oo e ®. opponent to goal
‘@ ' | ball Defend Intercept
¢ B o] ]N Wioba goal  the ball
Figure 3. Left: Tllustration of the soccer game. Right: Strategies of

Figure 2: An initial board (left) and a situation requiring a probabilistic choice for A (right). the hand-crafted rule-based agent.

Littman ‘94 He et al. ‘16

Also: Lagoudakis & Parr ‘02, Uther & Veloso ‘03, Collins ‘07

'b DeepMind



Value lteration for Zero-Sum Markov Games

Value iteration

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 87)

Repeat
A+0 .
Fo:_each s€S8: min max anw(s),s’ [Tl (37 a, S,) + "}/Vl (S/)]
v+ V(s) m2(s) m1(s)

V(s)  maxgy o ptssrisrarr—+—¥{sht
A + max(A, |v — V(s)|)
until A < 6 (a small positive number)

Output a detesministie policy, 7 ~ m,, sueh-that computed above
/ /

By, ? ’

b DeepMind



First MARL Algorithm: Minimax-Q (Littman ‘94)

1. Start with arbitrary joint value functions q(S, a, 0)

|

my action opponent action



First MARL Algorithm: Minimax-Q (Littman ‘94)

1. Start with arbitrary joint value functions q(S, a, O)

3
Max [ 0.5
my action opponent action
Y 4 \
—+ — VV\/

Induces a matrix of values




First MARL Algorithm: Minimax-Q (Littman ‘94)

1. Start with arbitrary joint value functions q(S, a, 0)

2. Define policy 7T as in value iteration (by solving an LP)



First MARL Algorithm: Minimax-Q (Littman ‘94)

1. Start with arbitrary joint value functions Q(S, a, 0)
2. Define policy 7T as in value iteration (by solving an LP)

3. Generate trajectories of tuple (S, a, o, S,) using
behavior policy 7/ = EUNIF(.A) -+ (1 = 6)7T



First MARL Algorithm: Minimax-Q (Littman ‘94)

1. Start with arbitrary joint value functions Q(S, a, 0)
2. Define policy 7T as in value iteration (by solving an LP)
3. Generate trajectories of tuple (S, a, o, S,) using
behavior policy 7/ = eUNIF(A) + (1 — e)
4. Update ¢(s,a,0) = (1— a)q(s,a,o)+ a(r(s,a,o,s)+vyv(s"))



First Era of MARL

Follow-ups to Minimax Q:

Friend-or-Foe Q-Learning (Littman ‘01)
Correlated Q-learning (Greenwald & Hall ‘03)
Nash Q-learning (Hu & Wellman ‘03)

Coco-Q (Sodomka et al. ‘“13)

Function approximation:

LSPI for Markov Games (Lagoudakis & Parr ‘02)

6 DeepMind



First Era of MARL

Nash Convergence of Gradient Dynamics in General-Sum Games

Satinder Singh Michael Kearns Yishay Mansour
AT&T Labs AT&T Labs Tel Aviv University
Florham Park, NJ 07932 Florham Park, NJ 07932 Tel Aviv, Israel
baveja@research.att.com mkearns@research.att.com mansour @mat h.tau.ac.il

Singh, Kearns & Mansour ‘03, Infinitesimal Gradient Ascent (IGA)

b DeepMind



https://arxiv.org/abs/1301.3892

First Era of MARL

a) b

.
-~
. .
. .
N .
~ .
\ P
. o
.
~ .
A .
.
.
.
.
.
.
.

Formalize optimization as a

)
dynamical system:
.

-
t’ ~
5 R
L'_' ®
‘
v
a
-
.
y
2
#
5
4
-
J
s
’
=
2
"

Figure 1: The general form of the dynamics: a) when U
has imaginary eigenvalues and b) when U has real eigen- techniques

values.

policy gradients

Analyze using well-established

Image from Singh, Kearns, & Mansour ‘03
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First Era of MARL

— Evolutionary Game Theory: replicator dynamics

fi(a) = mi(a) [u(a, m) — u(m)]

/

time derivative

b DeepMind



First Era of MARL

— Evolutionary Game Theory: replicator dynamics

fi(a) = mi(a) [u(a, m) — u(m)]

/ \

time derivative utility of action a against
the joint policy / population
of other players

‘b DeepMind



First Era of MARL

— Evolutionary Game Theory: replicator dynamics

fi(a) = mi(a) [u(a, m) — u(m)]

/ \

time derivative utility of action a against Expected / average utility
the joint policy / population of the joint policy /
of other players population

‘b DeepMind



First Era of MARL

1 1 ML) wSe W : ————————— — Y~ \
Vi W e g e o e BERELE L I ////‘_ﬂ-*\\‘{ \
075///////// / 0.75l t \ VN P | : 0751///"“*\\:\
[ | -~
v |15 5 0/ /] Frasr=>gily TERREE
i 40 | el L el
RSN L4447 o IR
RV YYYNEN N % VXD e ]
S Edd e &N | A= S N RNENENER ey
AL A W et A Ve, WG 8 P - e N~ e /
00 0.25 0.5 0.75 1 c0 0.25 0.5 0.756 1 00 0.25 0.5 0.75 1

Figure 4: The replicator dynamics, plotted in the unit simplex, for the prisoner’s dilemma
(left), the stag hunt (center), and matching pennies (right).

Bloembergen et al. 2015
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https://www.jair.org/index.php/jair/article/view/10952

First Era of MARL

WoLF: Win or Learn Fast. (Bowling & Veloso ‘01).
IGA is rational but not convergent!

e Rational: opponents converge to a fixed joint policy
— learning agent converges to a best response of joint policy

e Convergent: learner necessarily converges to a fixed policy

Use specific variable learning rate to ensure convergence (in 2x2 games)



First Era of MARL

Follow-ups to policy gradient and replicator dynamics:

e WOoLF-IGA, WolLF-PHC

e WOoLF-GIGA (Bowling ‘05)

e Weighted Policy Learner (Abdallah & Lesser ‘08)

e Infinitesimal Q-learning (Wunder et al. “10)

e Frequency-Adjusted Q-Learning (Kaisers et al. ‘10, Bloembergen et al. “11)
e Policy Gradient Ascent with Policy Prediction (Zhang & Lesser ‘10)

e Evolutionary Dynamics of Multiagent Learning (Bloembergen et al. ‘15)

6 DeepMind



So......

G DeepMind

Why call it “the first era™?



So......

Why call it “the first era™?

Scalability was a major problem.



Second Era: Deep Learning meets Multiagent RL

ﬂvimnm ent

Interpreter
% &

ion

Act

Agent

Source: spectrum.ieee.org

Source: wikipedia.org
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Deep Q-Networks (DQN) Mnih et al 2015

"Human-level control through deep reinforcement learning”

Atari Emulator

e Represent the action value (Q) function using a

convolutional neural network. / '\

e Train using end-to-end Q-learning. { pixels, reward ) {action)

e Can we do this in a stable way?

@ DeepMind



Independent Q-Learning Approaches

Independent Q-learning [Tan, 1993] Independent Deep Q-Networks [Tampuu et al., 2015]

Convolution Convolution Fully connected Fully connected
v v v -

Qz,a) — Q(z,a) + B(r +7V(y) — Qz, a))
V(z) = max Q(z,b)

bEactions

®
A o
prey hunter
[ ]
A A
Evolution of Q-value
N-of-prey/N-of-hunters || 1/1 | 1/2 | 20 | — it pyer
player
Random hunters 123.08 | 56.47 "
Learning hunters 25.32 | 12.21 g M
Table 1: Average Number of Steps to Capture a Prey § OSWJVW\"”\/ ”/\[
-

40 60 80 100 120
Number of frames played
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Learning to Communicate

t t+1 t t+1
/-——/\-ﬁ——\ /_——/\_—_\2 /"'——/\_—_\ /__._./\__._\
(@} u N l]2
= Action > * Action ol = Action Action =
5] Q-Net e Q-Net (5] C-Net = C-Net
1) Select <4 Select |t e Select - =] Select fatm
2 1 2 m m
m m m ( t+1
t-1 t t+1 ce (pr————— 51 B] 4 G — ————d DRU =
i + [_ > =i &\7 J ) y
— = s 1 . — s 1 i
* Action Action - » Action o Actior
& | Q-Net Ul | Q-Net b & | C-Net 9 Ue | | C-Net i
en e Select Select B = e Select Select
< A < 3
ol 02 ol 02
t ; t+1 v t v t+1

Environment

Environment

(a) RIAL - RL based communication (b) DIAL - Differentiable communication

Foerster et al. ‘16

@ DeepMind



Learning to Communicate

Module for agent 7 2" communication step CommNet model
i+l . R = : i {a,...,a;}
Y f J g f ¢ S
i3 1 i I
tanh | [ VS )
7 < mean ( | >®
cCiil H: @l tr
$ = i—1 i1 i1 = ( F ]J
iy i I Ui I i I U e
cJ h’; - {sl,'-'asJ_}

Sukhbaatar et al. ‘16
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Cooperative Multiagent Tasks

................................................

—"’s >
" / s \\
A A \ :
o I H
¥ \H, .‘. : i > O(s, 1) =f(m, 1) © (e, 1)
A N 4’—’7,‘~ :
o

— 05, 2)= f(m, 2) © f(m, 2)

S ? ;

: ] shs A &

. = - O(s, 3)=f(m, 3) ° (., 3)
3 ’ : ® f( D, 3)

Foerster et al. ‘18

Episodic Exploration for Deep Deterministic Policies:
An Application to StarCraft Micromanagement Tasks

Ng i g b irectional RN 57 olicy Action
Nicolas Usunier*, Gabriel Synnaeve*, Zeming Lin, Soumith Chintala W AventionNewon N Bidirctonal RN N Poiey A
Facebook AI Research () vt Function 4§ agen
usunier,gab,zlin, soumith@fb.com (a) Multiagent policy networks (b) Multiagent Q networks

November 29, 2016

~ BIC-Net (Peng et al."17)



Sequential Social Dilemmas

O
O
@+ 'k +1
®+ 'k +1-2
®+ * +1-2 Orange Misses: +1
@+ * +1 Green Misses: +1 -2
https://www.youtube.com/watch?v=0kalgz6 AvwE (a) Coins (b) PPD
Leibo et al. “17 Lerer & Peyskavich ‘18

b DeepMind


http://www.youtube.com/watch?v=0kaIqz6AvwE
https://www.youtube.com/watch?v=0kaIqz6AvwE

Centralized Critic Decentralized Actor Approaches

e Idea: reduce nonstationarity & credit assignment issues using a central critic
e Examples: MADDPG [Lowe et al., 2017] & COMA [Foerster et al., 2017]

e Apply to both cooperative and competitive games

v

Centralized critic trained to minimize loss:
E(oz) - Ex,a,r,x’[(Qf(xa ay,... ,aN) = y)z],

A wlf /
y=r; +vQ] (x,al,...,aN)|a9=”;(oj)

Decentralized actors trained via policy gradient
Vo;d(0:) = Boipn wyeim; [ Vo 108 (6:|6:) Q7 (X 6 550

e T 1

Critic <€

Environment
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.6+ AlphaGo
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AlphaGo vs. Lee Sedol

Lee Sedol (9p): winner of 18 world titles
Match was played in Seoul, March 2016

AlphaGo won the match 4-1

b DeepMind






AlphaZero: One Algorithm, Three Games

=
! - % -,r; J

Y o f




3D Worlds

Bansal et al. ‘18



https://arxiv.org/abs/1710.03748

Meta-Learning in RoboSumo

Reward direction Opponent

o

> ﬁ i Tatami

Legs with dynamically scaled torques

Al-Shedivat et al. ‘17

b DeepMind


https://arxiv.org/abs/1710.03641

Emergent Coordination Through Competition

red0/float far

Figure 1: Top-down view with individual camera views of 2v2 multi-agent soccer environment.

Liuetal.'19 and http:/qit.io/dm_soccer



https://arxiv.org/abs/1902.07151
http://git.io/dm_soccer

Capture-the-Flag (Jaderberg et al. “19)

Agent observation raw pixels

https://deepmind.com/blog/capture-the-flag-science/



http://www.youtube.com/watch?v=OjVxXyp7Bxw
https://deepmind.com/blog/capture-the-flag-science/

AlphaStar (Vinyals et al. “19)

Considered Location

T e ® y
Neural Network Activations r,.v~~of'h""“ Wam" L e
f = >

p)
3

. o

Considered Build/Train

https://deepmind.com/blog/alphastar-mastering-real-time-strateqy-qame-starcraft-ii/



https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Dota 2: OpenAl Five

00 v Oy ! Five G |

@ openal

https: openai.com/blog/openai-five-finals

b DeepMind


https://openai.com/blog/openai-five-finals/

Deep Multiagent RL Survey

Is multiagent deep reinforcement learning the answer or the question?
A brief survey

Pablo Hernandez-Leal , Bilal Kartal and Matthew E. Taylor
{pablo.hernandez,bilal.kartal ,matthew.taylor}@borealisai.com

Borealis Al
Universily of Alberta CCIS 3-232
Edmonton, Canada

https://arxiv.org/abs/1810.05587

6 DeepMind


https://arxiv.org/abs/1810.05587

Part 4: Partial Observability



@ DeepMind

Large
Problems

Small
Problems

Foundations of Multiagent RL

ff
Reinforcement Multiagent
Learning Reinforcement
Learning
- /f
Approximate Dynamic Game Theory

Programming

Single Agent

Multiple (e.g. 2) Agents
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Independent Deep Q-networks  (see Lanctot et al '17)

https.//www.youtube.com/watch?v=8vX https./www.youtube.com/watch?v=jOjwOkCM_i8

Independent learners who learned together Independent learners who learned using the same
algorithm, same architecture, same hyperparameters, but
different seed

b DeepMind


https://arxiv.org/abs/1711.00832
http://www.youtube.com/watch?v=jOjwOkCM_i8
http://www.youtube.com/watch?v=8vXpdHuoQH8
https://www.youtube.com/watch?v=8vXpdHuoQH8
https://www.youtube.com/watch?v=jOjwOkCM_i8

Independent Deep Q-networks  (see Lanctot et al '17)

https:/ www.youtube.com/watch?v=/5cplG3GsLw https:./www.youtube.com/watch?v=zilUohXvGK

Independent learners who learned together Independent learners who learned using the same
algorithm, same architecture, same hyperparameters, but
different seed

b DeepMind


https://arxiv.org/abs/1711.00832
http://www.youtube.com/watch?v=zilU0hXvGK4
http://www.youtube.com/watch?v=Z5cpIG3GsLw
https://www.youtube.com/watch?v=Z5cpIG3GsLw
https://www.youtube.com/watch?v=zilU0hXvGK4

Fictitious Self-Play iHeinrich et al. ‘15, Heinrich & Silver 20161

e Idea: Fictitious self-play (FSP) + reinforcement learning
e Update rule in sequential setting equivalent to standard fictitious play (matrix game)
e Approximate NE via two neural networks:

1. Best response net (BR):
o Estimate a best response
o Trained via RL

Policy
. Mixing Circular Reservoir
2. Average policy net (AVG): FEGEEET Buffer Buffer

o Estimate the time-average policy
o Trained via supervised learning

b DeepMind



Neural Fictitious Self-Play [Heinrich & Silver 2016}

e |educ Hold’em poker experiments:

10 T & : PR ! LER O
A\Y n”
Closeness” to Nash "
:'§
E
o,
&
NFSP ——
DQN, average strategy ——
DQN, greedy strategy ——
0.01 ' L | ' L | 1 I |
1000 10000 100000 le+06
Iterations

st scalable end-to-end approach to learn approximate Nash equilibria w/o prior domain knowledge
o Competitive with superhuman computer poker programs when it was released

6 DeepMind



Policy-Space Response Oracles (anctot et al '17)

PSRO Meta Agent

6 Google DeepMind

Random DJQN #1 DQN #2
Random 0.5 0.45 0.4
DQN #1 0.6 0.55 0.45

DQN #2 0.7 0.6 0.56

General Artificial Intelligence


https://arxiv.org/abs/1711.00832

Quantifying "Joint Policy Correlation”

In RL:

e Each player uses optimizes independently

e After many steps, joint policy (z, , ) co-learned for players 1 & 2
Computing JPC: start 5 separate instances of the same experiment, with

o Same hyper-parameter values
o Differ only by seed (!)

e Reload all 25 combinations and play =, with z) forinstances i, ]

6 DeepMind Multi-Agent and Al



Joint Policy Correlation in Independent RL

INRL in small2 (first) map

30
e 239

INRL in small4a map

18

Player #1
Player #1

Player #2

8
I‘

Multi-Agent and Al

Player #2
0 DeepMind



JPC Results - Laser Tag

6 DeepMind

Game Diag Off Diag | Exp. Loss
LT small2 | 30.44 20.03 34.2 %
LT small3 | 23.06 9.06 62.5 %
LT small4 | 20.15 5.71 71.7 %
Gathering | 147.34 146.89 none

field

Pathfind 108.73 106.32 none
merge

Multi-Agent and Al



Exploitability Descent (Lockhart et al. ‘19)

Algorithm 2: Exploitability Descent (ED) R S Ry

101__] ol o

input :7% — initial joint policy

1 fort € {1,2,---} do o
2 foric {1,---,n}do :
3 Compute a best response b (7 ~;* 107 -
4 foric {1,--- ,n},s €S, do .
5 Define b’ ; = {b}};4 E
6 Let q°(s) = VALUESVSBRs(7! "' (s),b.,) 107 <
7 mt(s) = GRADASCENT(m " '(s), at, q%(s)) 102

102 =

A FP-like algorithm conv. without averaging! o

Neural Net ED
Tabular ED

CFR
XFP

Amenable to function approximation e R p—

10° 10* 102 10° 104 10°

U

'Q Google DeepMind General Artificial Intelligence


https://arxiv.org/abs/1903.05614

A simple MDP

Pr(B |A, a)=0.75

Pr(C | A, a) = 0.25

Pr(D | A, b) = 0.4

Pr(E |A, b)=0.6



A simple MBPR Multiagent System

a b
F O G
m(F,1) = 0.75 me(F,2) = 0.25 7.(G,3) = 0.4 7.(G,4) = 0.6
B BCES
C d e f g h | j
3 1 0 2 4 2 3 2



Terminal history A.K.A. Episode

(A, a, F, 1, B, c) is a terminal history.

b DeepMind



Terminal history A.K.A. Episode

A
a b
FO G
m(F,1) = 0.75 me(F,2) = 0.25 7.(G,3) = 0.4 7.(G,4) = 0.6
B / D/
C d e f h [ j
3 -1 0 2 2 -3 2

(A, a, F 1, B, c) is aterminal history. (A, b, G, 3, D, g) is a another terminal history.

'b DeepMind



Prefix (non-terminal) Histories

(A, a,F 2, C)isahistory. Itis a prefix of (A, a,F,2,C,e)and (A a, F, 2, C, f).

b DeepMind



Perfect Recall of Actions and Observations

Another simple MDP:

7e(p, 1) = 0.01

100



Perfect Recall of Actions and Observations

Another simple MDP: A different MDP:

-0.05

7e(p,2) = 0.99

7e(p, 1) = 0.01

100

'b DeepMind



Partially Observable Environment

An information state is a set of histories consistent with an agent’s observations.

3-card Poker deck:;

Jack, Queen, King




Terminology

What is a “state”?

e An information state s corresponds to sequence of observations
o with respect to the playerto act at s

Example information state in Poker:

Ante: 1 chip per player,

Environment is in one of many world/ground states h € s

@ DeepMind Presentation Title — SPEAKER



Recall: Turn-Taking Perfect Information Games

.

X X

X
o

(6] O OX X X X X
X
(¢]

\W\

X

X (0] (®]
(¢]

NN INNIIN NN NN NN N

— Exactly one history per information state!
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{Q,V}-values and Counterfactual Values

What is a counterfactual value?

vé(m, s, a) /@Q%

The portion of the expected return (under s) from the start state, given that:

player i plays to reach information state s (then plays a).

6 Google DeepMind General Artificial Intelligence



Q-values in Partially Observable Environments

What........ . .isa q-value?

Qﬂ',i(sta a’t) =

'b Google DeepMind

AN

16 S — 5 4 a

General Artificial Intelligence



Q-values in Partially Observable Environments

= Z Pe(h | s (ha, 2)u; ()

h,2€Z(s¢,at)

All terminal histories z reachable Reach prqbabllltleS_: product of B
from s, paired with their prefix all policies’ state-action o
histories ha, where his in s probabilities along the portion of

the history between ha and z

General Artificial Intelligence

Q Google DeepMind



Q-values in Partially Observable Environments

h,z€Z(s¢,a+)

By Bayes rule

b Google DeepMind General Artificial Intelligence



Q-values in Partially Observable Environments

= Y e ue)

h,z€Z(s¢,a¢) I‘(St)

Since hisins, and his unique to s,

b Google DeepMind General Artificial Intelligence



Q-values in Partially Observable Environments

b n"(h) .
3 g 7T(h/)77 (ha/,Z)uz(z)
hazEZ(St,at) hf/ESt 77

b Google DeepMind General Artificial Intell igence



Q-values in Partially Observable Environments

Only player i’s reach probabilities Player i’'s opponent’s probabilities (inc. chance!)

o
n; (h)n-,
2. S )

.

Similarly here and here

777T (hav Z)uz (Z)
h,z€Z(s¢,a+)

b Google DeepMind General Artificial Intelligence



Q-values in Partially Observable Environments

L Z mr (h)nZ; (h)

n"(ha, z)u; (2}
S P )

Due to perfect recall ()

b Google DeepMind General Artificial Intelligence



Q-values in Partially Observable Environments

n";(h) -
= Z P ; 1 (ha, Z)uz(z)
h,2€Z(st,a+) Zh’ést U_z(h )

b Google DeepMind General Artificial Intelligence



Q-values in Partially Observable Environments

:h’zeg(; ,a)ﬁst . (h /)\777T(/ha,2)ui(zD

This is a counterfactual value!

'Q Google DeepMind General Artificial Intelligence



Q-values in Partially Observable Environments

1
. ZhESt nzz (h)

/Uz’c(ﬂ-a St a’t)

1
= v; (7, 8¢, a)

B—i(ﬂ-a St)

For full derivation, see Sec 3.2 of Srinivasan etal. 18

‘b Google DeepMind General Artificial Intelligence


https://arxiv.org/abs/1810.09026

Yeah.. so.... ?
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Counterfactual Regret Minimization (CFR)

Zinkevich et al. ‘08

Original game

e Algorithm to compute approx N algoﬁthmAbégEEd
Nash eq. In 2P zero-sum games .
e Hugely successful in Poker Al todng o\
e Size traditionally reduced apriori equ’ﬁ‘ifr*i‘um oty
equilirium

based on expert knowledge

e Key innovation: counterfactual i s e
C C !
values: U'i (7'(', 5 CL) ’Ui (’71‘7 8) Image form Sandholm “10

'Q Google DeepMind General Artificial Intelligence



CFR is policy iteration!

e Policy evaluation is analogous
e Policy improvement: use regret minimization algorithms
o Average strategies converge to Nash in self-play

e Convergence guarantees are on the average policies

6 Google DeepMind General Artificial Intelligence



Dee pStaCk (Moravcik et al. ‘17)

Action history Ranges % Values
Current public state

\ Game tree

Agent's possible actions Sanipled poker <
situations \‘\
N
/ ‘\\
Lookahead tree SN
\ Neural net [see (b)]

i \ Subtree

Figure 2: DeepStack overview. (a) DeepStack re-solves for its action at every public state it is
to act, using a depth limited lookahead where subtree values are computed using a trained deep
neural network (b) trained before play via randomly generated poker situations (c).
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https://science.sciencemag.org/content/356/6337/508

(Moravcik et al. ‘17)
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https://science.sciencemag.org/content/356/6337/508

Libratus (Brown & Sandholm ‘18)

RESEARCH ARTICLE

Superhuman Al for heads-up no-limit poker: Libratus
beats top professionals

b Google DeepMind


https://science.sciencemag.org/content/359/6374/418

Policy Gradient Algorithms

Parameterized policy 7@ with parameters ) (e.g. a neural network)
Define a score function J(ﬂ'g) = Up (30) = EW [Go]

Main idea: do gradient ascent on J.

1. REINFORCE (Williams ‘92, see RL book ch. 13) + PG theorem: you
can do this via estimates from sample trajectories.
2. Advantage Actor-Critic (A2C) (Mnih et al ‘16): you can use deep

networks to estimate the policy and baseline value v(s)

6 Goog[e DeepMind General Artificial Intelligence



Regret Policy Gradients (srinivasan et al. 18)

NashConv
~ w

e Policy gradient is doing a form of CFR minimization!

e Several new policy gradient variants inspired connection to regret

a -

[— NFSP — A2C — RPG — QPG — RM]

0.8
Episodes

NASHCONV in 2-player Leduc

6 DeepMind

NashConv

a -

e NFSP === A2C e== RPG == QPG. = RM

3
Episodes

NASHCONV in 3-player Leduc


https://arxiv.org/abs/1810.09026

Neural Replicator Dynamics (NeuRD)

Omidshafiei, Hennes, Morrill et al. ‘19

Replicator Dynamics Time-discretize
Update policy
parameters to Neural Replicator

minimize distance to Dynamics (NeuRD)
time-discretized RD

Parameterized policy

0; =041+ nzveyt—l(sta at; 0)A(st,at;0,w)

AN J \\ J

s,a
Logits, where policy is (J

7 = softmax(y)

@ Deepl\/lind Advantage q(s,3)-v(s) =«



https://arxiv.org/abs/1906.00190

NeuRD: Results

Biased Rock-Paper-Scissors Leduc Poker
102 _!I [ | [ | ol [ r . 101 'EI [T SN T I T T T O T X 111 IO O A W T 111 B |||||||I=__
E 3 w0 = S
1 7 ~ o = C
E 10 ¥ T _S 10° 1 T
o 10° = - = 3 :
b 3 E 2 107 ¢ 3
w 107! = r o z E
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Where to Go From Here?



Shoham & Leyton-Brown ‘09

Main Page Table of Contents Instructional Resources FErrata eBook Download™"’

Multiagent Systems

Algorithmic, Game-Theoretic, and Logical Foundations

Yoav Shoham

Stanford University

Kevin Leyton-Brown
University of British Columbia

Multiagent Systems
e D AR

YOAV SHOHAM
KEVIN LEYTON-BROWN Cambridge University Press, 2009

Order online: amazoncom

masfoundations.orqg

'Q Goog[e DeepMind General Artificial Intelligence


http://masfoundations.org/

Surveys and Food for Thought

e If multi-agent learning is the answer, what is the question?

o  Shoham et al. ‘06

o Hernandez-Leal et al. ‘19

e A comprehensive survey of MARL (Busoniu et al. ‘08)
e Game Theory and Multiagent RL (Nowé et al. 12)

e Study of Learning in Multiagent Envs (Hernandez-Leal et al. “17)
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The Hanabi Challenge

w1

[ v2

Stacks

w4l Y1 R5  B1 R2 BE&]
P2

Deck Discards

B5 B3 B4 B2

Figure 1: Example of a four player Hanabi game from the point of view of player 0. Player 1
acts after player 0 and so on.

Bard etal. ‘19

@ Google DeepMind

Also Competition at IEEE Cog (ieee-cog.org)

General Artificial Intelligence


https://arxiv.org/abs/1902.00506
http://ieee-cog.org/

OpenSpiel: Coming Soon!

Open source framework for research
in RL & Games
C++, Python, and Swift impl’s

25+ games

10+ algorithms

Tell all your friends! (seriously!)

— August 2019

b DeepMind




AAAI 2020 Workshop on RL in Games?

b DeepMind

s

AGAA

AAAIT9-RLG Summary:

e 39 accepted papers
o 4 oral presentations
o 35 posters

e 1 “Mini-Tutorial”

e 3 lInvited Talks

e Panel & Discussion

http://aaai-rlg.mlanctot.info/



http://aaai-rlg.mlanctot.info/

Questions?

Marc Lanctot

@ DeepMind

lanctot@google.com

mlanctot.info/

(Please contact me if you have trouble finding any references!)
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