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Abstract—Monte Carlo Tree Search (MCTS) is a widely-used
technique for game-tree search in sequential turn-based games.
The extension to simultaneous move games, where all players
choose moves simultaneously each turn, is non-trivial due to the
complexity of this class of games. In this paper, we describe
simultaneous move MCTS and analyze its application in a set
of nine disparate simultaneous move games. We use several
possible variants, Decoupled UCT, Sequential UCT, Exp3, and
Regret Matching. These variants include both deterministic and
stochastic selection strategies and we characterize the game-play
performance of each one. The results indicate that the relative
performance of each variant depends strongly on the game and
the opponent, and that parameter tuning can also not be as
straightforward as the purely sequential case. Overall, Decoupled
UCT performs best despite its theoretical shortcomings.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) [1], [2] is a popular
search technique that has demonstrated initial success in se-
quential turn-based games such as Go [3] and Hex [4]. MCTS
has also been applied with practical success in general game
playing (GGP) [5] and other complex settings [6].

Simultaneous move games are turn-based games where on
each turn all the players choose their moves simultaneously.
Then, the state of the game in the following turn depends
on the collection of moves chosen by all players. A simple
example is the one-shot game of Rock, Paper, Scissors where
each player has the same three legal moves and wins and losses
are determined by the combination of moves chosen by both
players. Another example is the classic board game Diplomacy
by Avalon Hill, where each turn consists of players submitting
lists of orders for each of their units, and the outcome of each
order depends on the orders of units in surrounding regions.

The most popular MCTS algorithm is Upper Confidence
Bounds for Trees (UCT) [2] based on the bandit algorithm
Upper Confidence Bounds (UCB) [7]. Since UCT was orig-
inally designed for strictly sequential turn-taking games, its
theoretical guarantees (such as eventual convergence to the op-
timal strategy) do not apply in simultaneous move games [8].
The standard application of UCT to simultaneous move games,
first used in general game-playing [9], is a variant we call
Decoupled UCT (DUCT), where each player uses UCB to
select their own moves independent of how the opponent’s
(simultaneously chosen) move on the same turn can affect the
outcome. This variant has been shown to not converge to an
optimal strategy, even in a game with a single state [8].

A popular choice for a simultaneous move game among
researchers and enthusiasts has been Tron, a game played on
a discrete grid inspired by the 1982 movie. In Tron, [10]

proposes a purely sequential version which we call Sequen-
tial UCT. In [11], Sequential UCT in Tron is improved by
suggesting several heuristic improvements and handling some
of the important simultaneous move situations. Later work
proposed several new search variants, including stochastic
selection strategies, and compared their success in Tron [12].

Several new selection strategies for simultaneous move
MCTS were also proposed for Goofspiel, a domain where
playing with randomized (“mixed”) strategies is impor-
tant [13]. Several of these new techniques compute a mixed
strategy, and appear to perform better against DUCT in Goof-
spiel. Under appropriate settings, some of these variants were
shown to converge to an optimal strategy [14]. Nonetheless, in
Tron, a variant of DUCT outperformed the stochastic variants
that were successful in Goofspiel, even though Tron also has
situations that require mixed strategies [15]. In addition, the
performance of each method in Tron varied significantly based
on the board configuration, as first seen in [11]. These results
seem to indicate that the success of each simultaneous move
MCTS variant may depend largely on the particular game.

In this paper, we aim to give a general overview of
the relative performance of the different simultaneous move
MCTS variants. First, we describe a general simultaneous
move MCTS framework along with several variants used to
date. Then, we perform an elaborate analysis of these variants
over nine different games chosen from previous work and GGP
competitions. The results show that the expected performance,
and hence choice of variant, can vary significantly based on
the game and opponent.

The structure for the rest of the paper is as follows. In
Section II, we describe the background necessary to express
our technique. In Section III we describe simultaneous move
MCTS. In Section IV, we present the empirical results and
discuss them further. Finally, in Section V we conclude and
indicate potential future research.

II. BACKGROUND

In this section, we describe the foundation and terminology
upon which our algorithms are based.

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [1], [2] is a simulation-
based search algorithm often used in games. The main idea is
to iteratively run simulations from the root of the search tree
to a terminal game state, incrementally growing a tree rooted
at the current state of the actual played game.
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Fig. 1: An example of a two-player simultaneous move game.
Each node represents a state of the game. Five nodes are
shown, and at each node, each player has two individual
moves, for the row player: top (t) and bottom (b), and for
the column player: left (l) and right (r), leading to four joint
moves per node. Payoffs (u1) shown are for Player 1, and since
k = 4, Player 2’s payoffs are u2 = 4− u1.

MCTS consists of four strategic steps. (1) The selection
step determines how to traverse the tree from the root node to
a leaf node of the tree L. It should balance the exploitation of
successful moves with the exploration of new moves. (2) In the
playout step, a random game is simulated from leaf node of the
tree L until the end of the game. (3) In the expansion step, one
or more children of L are added. (4) In the back-propagation
step, the reward R obtained is back-propagated through the
tree from L to the root node. Examples and pseudo-code can
be found in the MCTS survey article [6].

In simultaneous move games, the process is similar, but
simultaneous move selection introduces additional challenges.

B. Simultaneous Move Games

A finite game with simultaneous moves can be described
by a tuple (N ,S = D ∪ Z,A, T , ui, s0). The player set
N = {1, 2} contains player labels, and by convention a player
is denoted by i ∈ N . S is a set of states, with Z denoting the
terminal states, and D the states where players make decisions.
A = A1 ×A2 is the set of joint moves of individual players.
We denote Ai(s) the moves available to player i in state
s ∈ S. The transition function T : S ×A1 ×A2 7→ S defines
the successor state given a current state and moves for both
players. The utility functions ui : Z 7→ [vmin, vmax] ⊆ R
gives the utility of player i, with vmin and vmax denoting
the minimum and maximum possible utility, respectively. The
game begins in an initial state s0. In our algorithms we assume
constant-sum games, so ∀z ∈ Z, u1(z) + u2(z) = k. An
example of a constant-sum simultaneous move game with
k = 4 is depicted in Figure 1.

A matrix game is a single step simultaneous move game
with legal move sets A1 and A2. Each entry in the matrix Arc
where (r, c) ∈ A1 × A2 corresponds to a payoff (to player 1)
if row r is chosen by player 1 (Max) and column c by player
2 (Min). For example, in Matching Pennies, each player has
two moves. The row player receives a payoff of 1 if both
players choose the same move and 0 if they do not match.
Two-player simultaneous move games are sometimes called
stacked matrix games because at every state s there is a joint

move set A1(s) × A2(s) that either leads to a terminal state
or to a subgame which is itself another stacked matrix game.

Define Σi to be the set of behavioral strategies (where
each strategy is a mapping from each state to a probability
distribution over actions at that state) for player i. A Nash
equilibrium profile in this case is a pair of behavioral strategies
optimizing V ∗ = maxσ1∈Σ1

minσ2∈Σ2
Ez∼σ[u1(z)]. In other

words, neither player can improve their utility by deviating
unilaterally. For example, the matrix game that represents
the second child (from the left) in Figure 1 has only one
equilibrium strategy which mixes equally between both moves,
i.e., play with a mixed strategy (distribution) of (0.5, 0.5)
giving expected payoff V ∗ = 2.

In two-player constant-sum games, a Nash equilibrium
strategy is optimal in the minimax sense. It guarantees the pay-
off of at least V ∗ against any opponent. Any non-equilibrium
strategy has a best response, which will make it win less than
V ∗ in expectation. Moreover, a subgame perfect NE strategy
can earn more than V ∗ against weak opponents. After the
opponent makes a sub-optimal move, the strategy will never
allow it to gain the loss back. The value V ∗ is known as the
minimax-optimal value of the game and is the same for every
equilibrium profile by von Neumann’s minimax theorem.

Two-player constant-sum simultaneous move games can
be solved (i.e., Nash equilibrium strategies computed) using
backward induction [16], [17], [18]. The main idea is to start
from the endgame positions and individually compute the V ∗
of each subgame, by solving a linear program at each state,
and working back up to the root state. For the example in
Figure 1, the value V ∗ of the matrix game on the bottom-left
is 3 (if the row player is maximizing) because each player
has a (iteratively) strictly dominated strategy, and V ∗ of the
other game is 2. These are the unique game-theoretic values
for a joint moves {(l, t), (l, b)} in the parent node. In MCTS,
these values are approximated using Monte Carlo sampling,
and the variants use the estimates when selecting moves. As in
purely sequential games, search techniques approximate these
underlying game-theoretic algorithms, but the connection is not
as straightforward since the optimal strategies can be mixed
and V ∗ can be any value in the range of [vmin, vmax].

For an elaborate overview of simultaneous move games,
including examples and recent work, see [19, Chapter 5].

III. SIMULTANEOUS MOVE MCTS

In this section, we present a generalized description of
MCTS based on the one used in Tron [12]. Each specific step
(SELECT, UPDATE, and final move selection) depends on the
chosen variant described in the appropriate subsection.

In Simultaneous Move MCTS (SM-MCTS), the main dif-
ference with standard MCTS is that during the selection step,
at each node, a joint move is selected. The convergence to an
optimal strategy depends critically on the selection and update
policies applied, which are not as straightforward as in purely
sequential games. Algorithm 1 describes a single simulation
of SM-MCTS. T represents the MCTS tree in which each
state is represented by one node. Every node s maintains a
cumulative reward sum over all simulations through it, Xs,



1 SM-MCTS(node s)
2 if s is a terminal state (s ∈ Z) then
3 return u1(s)
4 else if s ∈ T and EXPANSIONREQUIRED(s) then
5 Choose a previously unselected (a1, a2)
6 s′ ← T (s, a1, a2)
7 Add s′ to T
8 u1 ← PLAYOUT(s′)
9 Xs′ ← Xs′ + u1

10 ns′ ← ns′ + 1
11 UPDATE(s, a1, a2, u1)
12 return u1

13 (a1, a2)← SELECT(s)
14 s′ ← T (s, a1, a2)
15 u1 ← SM-MCTS(s′)
16 UPDATE(s, a1, a2, u1)
17 return u1

Algorithm 1: Simultaneous Move Monte Carlo Tree Search

and a visit count ns, both initially set to 0. As with standard
MCTS, when a state is visited these values are incremented
on lines 9 and 10, and in the node updates on lines 11 and
16. Note that Algorithm 1 explicitly stores the rewards and
estimates only in view of player one, hence the u1 notation,
and the opponent’s reward is obtained as u2 = k − u1 as
necessary. As seen in Figure 1, a matrix of references to the
children is maintained at each state.

At node s, the estimated values X̄s′ of the children nodes
s′ = T (s, a1, a2) form an estimated payoff matrix for node s.
Each variant below will describe a different way to select a
joint move (line 13) and update a node (lines 11 and 16).

We focus on a number of SM-MCTS variants. The most
popular one is straightforward adaption of UCT. Though it
has been shown to not converge to a Nash equilibrium even
in a one-shot single-state game [8], it has nonetheless been
popular and successful in general game playing. The second is
Exp3 [20], which was also applied successfully to the popular
online card game Urban Rivals [21], [22]. Regret Matching,
was recently shown to perform well in Goofspiel [13]. The
latter two were also used in a recent theoretical analysis of the
convergence of SM-MCTS [14]. Finally, we also try Sequential
UCT, which has been previously used in Tron [10], [15].

A. Decoupled UCT

In Decoupled UCT (DUCT), each player i maintains for
every state s separate reward sums Xi

s,a and visit counts nis,a
for their own move set a ∈ Ai(s). In essence, each player
decouples the matrix in each state and applies UCB over the
cumulative rewards for each of their own moves as if there was
no joint dependency on these rewards. When a joint move
needs to be selected on line 13, each player selects a move
that maximizes the decoupled UCB value over their reward
estimates independently:

ai = argmax
a∈Ai(s)

{
X̄i
s,a + C

√
lnns
ns,a

}
, where X̄i

s,a =
Xi
s,a

ns,a
(1)

Xs′ = 3

ns′ = 1

ns′ = 1

Xs′ = 0
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Fig. 2: A detailed example of Decoupled UCT. All payoffs are
shown in view of Player 1 (Max).

Here, C is a parameter that determines how much weight to
place on exploration. In DUCT, UPDATE simply increments
the decoupled values for each player i: Xi

s,ai ← Xi
s,ai + ui,

and ns,ai ← ns,ai + 1.

Consider again the game from Figure 1, with player set
N = {Max,Min}, root node s, and move sets AMax(s) =
{t, b},AMin(s) = {l, r}, vmin = 0, and vmax = 4. An example
of DUCT run for 5 simulations is given in Figure 2. Suppose
four simulations are run, ns = 4 and rewards received are
uMax = 3 for (t, l), 4 for (b, l), 0 for (b, r), and 2 for (t, r). The
tree contains exactly five states: s, and each child of s. On the
fifth simulation, Max chooses among t and b and Min chooses
among r and l, both by using Equation 1. In this case, X̄Max

s,t =
(3 + 2)/2 = 2.5 and X̄Max

s,b = (4 + 0)/2 = 2. Then X̄Min
s,l =

4− ((3 + 4)/2) = 0.5 and X̄Min
s,r = 4− ((2 + 0)/2) = 3.

In DUCT, after all the simulations have been performed,
each player i chooses separately their own final move with the
highest estimated reward maxa∈Ai(s) X̄

i
s,a.

B. Exp3

In Exp3 [20], each player maintains an estimate of the sum
of rewards, denoted x̂is,a, and visit counts nis,a for each of their
own moves. In the case of Exp3, however, x̂is,a represents a
cumulative weighted reward, where each value gets scaled by
the probability of it having been sampled. These values and
strategies are maintained separately for each player, so Exp3
is decoupled in the same sense as DUCT.

The joint move selected on line 13 is composed of moves
independently selected for each player based on a sampling
probability distribution composed for each player based on
x̂is,a. The probability of sampling move ai is

σti(s, ai) =
(1− γ)eηw

i
s,ai∑

aj∈Ai(s)
e
ηwi

s,aj

+
γ

|Ai(s)|
, where (2)

η =
γ

|Ai(s)|
, and wis,a = x̂is,a − max

a′∈Ai(s)
x̂is,a′ .



Here, γ is the probability of exploring (choosing a random
move). The update after selecting joint move (a1, a2) and
obtaining a simulation result (u1, u2) updates the visits count
and adds to the corresponding reward sum estimates the reward
divided by the probability that the move was played by the
player using ns,ai ← ns,ai + 1, x̂is,ai ← x̂is,ai + ui

σt
i(s,ai)

.
Dividing the value by the probability of selecting the corre-
sponding move makes x̂is,a estimate the sum of rewards over
all iterations, not only the ones where ai was selected.

The mixed strategy used by player i after the simulations
are done is given by the frequencies of visit counts of the
moves, σfinali (s, ai) = ns,ai /

∑
bi∈Ai(s)

ns,bi . Previous
work [21] suggests first removing the samples caused by the
exploration. This modification proved to be useful also in our
experiments, so before computing the resulting final mixed
strategy, we set

n′s,ai ← max

0, ns,ai −
γ

|Ai(s)|
∑

bi∈Ai(s)

ns,bi

 . (3)

For final move selection, a move is chosen by sampling
according to a distribution that normalizes n′s,ai .

C. Regret Matching

This variant applies regret matching [23] to the current
estimated matrix game at each stage. Suppose iterations are
numbered from t ∈ {1, 2, 3, · · · } and at each iteration and
each node s there is a mixed strategy σti(s) used by each
player i for each node s in the tree, initially set to uniform
random: σ0

i (s, a) = 1/|A(s)|. Each player i maintains a
cumulative regret ris[a] for having played σti(s) instead of
a ∈ Ai(s). In addition, a table for the average strategy is
maintained per player as well σ̄is[a]. The values in both tables
are initially set to 0. As in DUCT, the regret values ris[ai] are
maintained separately by each player. However, the updates
and specifically the reward uses a value that is a function of
the joint move space.

On iteration t, the selection policy (line 13 in Algorithm 1)
first builds the player’s current strategies from the cumulative
regret. Define the operator (·)+ = max(·, 0), i.e., (−3)+ = 0
and 4+ = 4, and define

σti(s, a) =
ris[a]

R+
sum

if R+
sum > 0 or

1

|Ai(s)|
otherwise, (4)

where R+
sum =

∑
a∈Ai(s)

ri,+s [a]. The main idea is to adjust
the strategy by assigning higher weight proportionally to
moves based on the regret of having not taken them over
the long-term. To ensure exploration, a γ-on-policy sampling
procedure similar to Equation 2 is used choosing move a with
probability γ/|A(s)|+ (1− γ)σti(s, a).

The updates on line 11 and 16 add regret accumulated at the
iteration to the regret tables ris and the average strategy σ̄is[a].
Suppose joint move (a1, a2) is sampled from the selection
policy and utility ui is returned from the recursive call on
line 15. Label the current child (i, j) estimate X̄s,i,j and the
reward(i, j) = X̄s,i,j if (i, j) 6= (a1, a2), or ui otherwise.
The updates to the regret are:

∀a′1 ∈ A1(s), r1
s [a
′
1]← r1

s [a
′
1] + (reward(a′1, a2)− u1),

∀a′2 ∈ A2(s), r2
s [a
′
2]← r2

s [a
′
2] + (reward(a1, a

′
2)− u2),

and average strategy updates are σ̄is[a]← σ̄is[a] + σti(s, a) for
each player. Here, u1 is the reward for player one and recall
that the reward for the other player u2 = k − u1.

The final move for the root s is chosen by sampling over
the strategy obtained by normalizing the values in σ̄is.

This application of regret matching is similar to Monte
Carlo Counterfactual Regret Minimization (MCCFR) [24],
except the regret is not counterfactual and the means of child
nodes are used to estimate expected values of the subtrees.
Convergence to an equilibrium can be guaranteed by backprop-
agating each node’s estimated value but the standard method
in Algorithm 1 has been shown to work better in practice [14].

D. Sequential UCT

Sequential UCT (SUCT) performs regular UCT on a seri-
alized game tree, i.e., one that is turned into a purely sequential
game. In the running example in the simultaneous game, the
first simulation is (t, l)→ (b, l)→ 3. In Sequential UCT, this
would be four steps: t→ l→ b→ l→ 3.

In SUCT, a different tree is built, one where a player
chooses a move and the opponent is allowed to know which
move the player chose and can respond accordingly. The
motivation for this is that if a player announces his move to the
opponent and the opponent is allowed to choose a 1-ply best
response, then the searching player will learn to play the move
that has the least chance of being penalized by an opponent.
A portion of the serialized tree for the running example game
is given in Figure 3.

This serialized tree approach can provide bounds the true
minimax value of the root node in the simultaneous move
game, and has been applied to RTS combat scenarios [25]
and equilibrium computation algorithms [26]. In this paper, we
assume that the search player moves and then the opponent
responds. This leads to defensive play as explained above.
However, this order could be reversed for aggressive play, or
even randomized as was done in αβ search for abstract combat
games [27].

IV. EMPIRICAL EVALUATION

In this section, we discuss our experimental setup for eval-
uating SM-MCTS. We start by describing nine simultaneous
move games used previously in GGP.

t b

l r l r

Node s

Fig. 3: A Sequential UCT tree after six simulations, with Player
1 as the search player. The root s with the four leaf nodes
correspond to the five nodes shown in Figures 1 and 2. In
SUCT, Player 2 has two intermediate response nodes.



A. Game Descriptions

Battle is played on an 8×8 board. Each player has 20
disks. These disks can move one square or capture an opponent
square next to them. Instead of a move, the player can choose
to defend a square occupied by their piece. If an attacker
attacks such a defended square, the attacker will be captured.
The goal is to be the first player to capture 10 opponent disks.

Bidding Tic-Tac-Toe is a variation of normal Tic-Tac-Toe
with a bidding round between normal play that decides who
gets to place a marker on the board. Each player begins with
three coins, and the X player has an additional tiebreaker token.
When a player wins a bidding round, allowing that player to
place a marker, the coins used to bid are given to the opponent.
The tiebreaker token can optionally be used to break ties, and
if so, the tiebreaker token is also given to the opponent. The
winning conditions are the same as standard Tic-Tac-Toe.

Chinook is a variant of Breakthrough where two indepen-
dent games are played simultaneously. One game on the white
squares and another one on the black squares. Black and White
move their pieces simultaneously like Checkers pawns. As in
Breakthrough, the first player that reaches the opposite side of
the board wins the game.

Goofspiel is a card game where each player gets 13 cards
marked 1-13, and there is a face down point-card stack (also
1-13). Every turn, the upcard (top card of the point-card stack
is turned face up, Each player chooses a bid card from their
hand simultaneously. The player with the higher bid takes the
upcard. The bid cards are then discarded and a new round
starts. At the end of 13 rounds, the player with the highest
number of points wins, a tie ends in a draw. In this paper, we
assume that the point cards have a fixed (decreasing) order.

In Runners each turn both players decide how many steps
they want to move forward or backward, with a maximum of
three steps per turn. The aim is to move 50 steps forward.

Oshi-Zumo(N,K,M) is a wrestling simulation game
played on a discrete single-dimensional grid with 2K + 1
positions, where each player starts with N coins [17]. A
wrestler token begins in the middle position. Every turn, each
player bids b ≥ M coins. The coins bid are then discarded
and the player bidding the most coins pushes the wrestler one
position closer to the goal for that player. The parameters used
in our experiments are (50, 3, 0).

Pawn Whopping is a simultaneous move version of Break-
through, played on an 8 × 8 board. Each player has 16 pawns
starting on one side of the board and the goal is to move
one of their pieces to the other side of the board. Pawns can
capture diagonally and only move forward one cell straight. If
opposing pawns try to capture each other or move to the same
square, no change is made.

Racetrack Corridor is played on a board with length 5 cells
and width 3 cells. Each player starts at the top of the board
and the aim is to reach the other side of the board before
the opponent does. Each move, the player can decide to move
forward, sideways or place a wall on the board of the opponent,
which spans two thirds of the width of the board.

Tron is a two-player game played on discrete grid possibly
obstructed by walls. At each step in Tron both players move

DUCT SUCT Exp3 RM
Battle C = 0.4 C = 0.4 γ = 0.8 γ = 0.025

Bidding Tic-Tac-Toe C = 0.0 C = 0.0 γ = 0.9 γ = 0.150
Chinook C = 0.4 C = 0.4 γ = 0.2 γ = 0.300
Goofspiel C = 0.4 C = 0.8 γ = 0.1 γ = 0.200

Oshi-Zumo C = 0.4 C = 1.8 γ = 0.6 γ = 0.750
Pawn Whopping C = 1.4 C = 1.4 γ = 0.4 γ = 0.500

Racetrack Corridor C = 1.2 C = 0.8 γ = 0.4 γ = 0.150
Runners C = 0.8 C = 1.8 γ = 0.3 γ = 0.500

Tron C = 1.8 C = 2.0 γ = 0.3 γ = 0.300

TABLE I: Parameter values.

to adjacent cells, and a wall is placed in the cells the players
started on that turn. Both players try to survive as long as
possible. If both players can only move into a wall, can only
move off the board or move into each other at the same turn,
the game ends in a draw. The initial position is a 13×13 square
field with a walled “box” in the center (board (a) from [15]).

B. Test Environment

Each of the games described above is implemented in
Java. As we intend for our comparison to be general, the
domains were influenced by those used in GGP competitions
and research work, and our goals are to closely match the
conditions of the GGP settings. The advantage is that we do
not have to deal with a slow GDL reasoner. Therefore, we
can use shorter time settings than the longer ones often used
in GGP, and still guarantee more simulations. The rules of
the games are implemented without any domain knowledge.
Therefore every variant uses a uniform random playout policy.
In this way, we still mimic GGP, but the experiments are much
faster and generate more games to ensure the assessments are
based on data that is statistically significant.

DUCT, SUCT, Exp3, and RM are pair wise compared in
each of the nine games. The time setting is 2.5 seconds per
move (the number of simulations per second depends on the
game and varies between 2200 and 28000). Each combination
of one variant versus another in a particular game consists of
1000 games.

In GGP, all utilities are non-negative, so without loss of
generality, u1, u2 ≥ 0. Also, games may not be constant-
sum. In our implementation, we ensure that all payoffs are
appropriately scaled to ensure that they are k-sum, with
k > 0, by using a similar transformation previously used in
CADIAPLAYER [28]: SCALE(u1, u2) = (u1−u2+k

2 , u2−u1+k
2 ).

C. Parameter Tuning

Before the different algorithms are compared, their parame-
ters are tuned by self-play where different parameter values are
compared against a reference parameter. In DUCT, and SUCT
the default parameter is C = 1.4. The reference parameters for
Exp3 and RM are set to γ = 0.2 and γ = 0.025, respectively,
because they are the optimal parameters in Goofspiel [13]. The
tuned parameter values are shown in Table I.

The table shows that the optimal parameter value depends
on the game. As it is difficult to choose one parameter value
for each algorithm that works well in all games, we choose
to use a different parameter value for each game separately.
In this way, we can see how well each of the algorithms can
perform under optimal conditions. In the GGP context this is
difficult, because the game playing agents often have severely
restricted time to interpret the rules before play starts.



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.4 0.8 1.2 1.6 1.8 2

W
in

 r
at

e
 

C 

Decoupled UCT 

Battle

Bidding Tic-Tac-Toe

Chinook

Goofspiel

Oshi-Zumo

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.4 0.8 1.2 1.6 1.8 2

W
in

 r
at

e
 

C 

Decoupled UCT 

Pawn Whopping

Racetrack Corridor

Runners

Tron

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.01 0.05 0.075 0.1 0.15 0.2 0.3 0.5 0.65 0.75

W
in

 r
at

e
 

γ 

Regret Matching Battle

Bidding Tic-Tac-Toe

Chinook

Goofspiel

Oshi-Zumo

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.01 0.05 0.075 0.1 0.15 0.2 0.3 0.5 0.65 0.75

W
in

 r
at

e
 

γ 

Regret Matching 
Pawn Whopping

Racetrack Corridor

Runners

Tron

Fig. 4: Tuning Regret Matching and Decoupled UCT

D. Experimental Results

1) Parameter Landscape: Figure 4 shows the win rate
of DUCT depending on C against the reference parameter
C = 1.4 and shows the win rate of Regret Matching depending
on γ against the reference parameter γ = 0.025. The figure
highlights two important results. First, it is not possible to
choose a parameter value that performs well in all games.
Second, the performance of Regret Matching and Decoupled
UCT can depend heavily on the parameter value.

We notice that the win rates of DUCT vary quite sensitively
in Bidding Tic-Tac-Toe, Oshi-Zumo, and Chinook, and even
more so when C < 1.2. For Regret Matching, generally
interval γ ∈ [0.2, 0.5] seems to be safe but the optimal
parameter varies significantly across game types.

The behavior of SUCT is similar to that of DUCT. The
behavior of Exp3 is more regular than that of the other variants.
Still, optimal parameters varies significantly across game types.
Therefore, a separate parameter value is chosen for each game
and variant. See Table I for the chosen parameter values.

2) Performance Comparisons: Tables II, III, IV show the
performance results for each variant in the games we have
tried. Tables report win percentage with 95% confidence
intervals. Draws counts as a half win and half loss.

Table II shows the full results of every variant against every

other variant in each game. One thing that is clear is that Regret
Matching is preferred over all other variants in Oshi-Zumo.
However, Regret Matching seems to lose quite significantly
to all the other variants in Battle, Chinook, Pawn Whopping,
Racetrack Corridor, and Tron, making it a polar choice. Exp3
seems to suffer less in this regard and in some cases (Chinook,
Pawn Whopping, Racetrack Corridor, and Tron) beats Regret
Matching quite significantly, but generally loses against both
DUCT and SUCT in most games.

We also tested another variant of DUCT, called UCB1-
Tuned (DUCB1T) [7], which performs almost equally as
DUCT. Therefore, the results are not included in the tables.
In four games, there seems to be some performance differ-
ences between DUCT and DUCB1T. Namely, in Chinook
and Tron, DUCB1T performs slightly better than DUCT with
a win percentage of 54.30 (± 3.05) and 52.90 (± 2.35),
respectively. There were no significant differences between the
performances of DUCT and DUCB1T against Exp3, RM, and
SUCT over all games.

We also notice that SUCT is significantly better than
DUCT in Tron. We have discovered in previous work that
mistakes in Tron are unforgiving [15], so it is possible that
the overly defensive play of SUCT more efficiently avoids
mistakes that could lead to strong best responses from the
opponent. From previous work in Tron, when using informed
playout policies UCB1-Tuned selection variant seemed to do



Battle DUCT Exp3 RM SUCT
DUCT 100.00 (± 0.00) 100.00 (± 0.00) 59.90 (± 2.38)
Exp3 0.00 (± 0.00) 42.25 (± 2.79) 0.00 (± 0.00)
RM 0.00 (± 0.00) 57.75 (± 2.79) 0.00 (± 0.00)

SUCT 40.10 (± 2.38) 100.00 (± 0.00) 100.00 (± 0.00)
B.T.T.T. DUCT Exp3 RM SUCT
DUCT 61.45 (± 2.90) 52.15 (± 3.01) 51.00 (± 2.92)
Exp3 38.55 (± 2.90) 45.65 (± 3.04) 41.15 (± 2.94)
RM 47.85 (± 3.01) 54.35 (± 3.04) 43.85 (± 3.01)

SUCT 49.00 (± 2.92) 58.85 (± 2.94) 56.15 (± 3.01)
Chinook DUCT Exp3 RM SUCT
DUCT 91.75 (± 1.68) 99.40 (± 0.48) 68.00 (± 2.87)
Exp3 8.25 (± 1.68) 89.45 (± 1.90) 17.95 (± 2.37)
RM 0.60 (± 0.48) 10.55 (± 1.90) 0.65 (± 0.49)

SUCT 32.00 (± 2.87) 82.05 (± 2.37) 99.35 (± 0.49)
Goofspiel DUCT Exp3 RM SUCT

DUCT 50.15 (± 2.54) 5.00 (± 1.34) 73.85 (± 2.40)
Exp3 49.85 (± 2.54) 37.80 (± 2.98) 58.45 (± 2.82)
RM 95.00 (± 1.34) 62.20 (± 2.98) 30.75 (± 2.83)

SUCT 26.15 (± 2.40) 41.55 (± 2.82) 69.25 (± 2.83)
O.Z. DUCT Exp3 RM SUCT

DUCT 81.35 (± 1.86) 29.40 (± 2.58) 82.05 (± 1.86)
Exp3 18.65 (± 1.86) 24.20 (± 2.50) 37.00 (± 2.47)
RM 70.60 (± 2.58) 75.80 (± 2.50) 65.10 (± 2.67)

SUCT 17.95 (± 1.86) 63.00 (± 2.47) 34.90 (± 2.67)
P.W. DUCT Exp3 RM SUCT

DUCT 74.30 (± 1.58) 98.60 (± 0.53) 49.90 (± 0.14)
Exp3 25.70 (± 1.58) 96.30 (± 0.98) 29.00 (± 1.53)
RM 1.40 (± 0.53) 3.70 (± 0.98) 0.85 (± 0.42)

SUCT 50.10 (± 0.14) 71.00 (± 1.53) 99.15 (± 0.42)
R.C. DUCT Exp3 RM SUCT

DUCT 61.35 (± 1.41) 98.90 (± 0.45) 49.95 (± 0.22)
Exp3 38.65 (± 1.41) 93.90 (± 1.32) 38.20 (± 1.37)
RM 1.10 (± 0.45) 6.10 (± 1.32) 1.40 (± 0.53)

SUCT 50.05 (± 0.22) 61.80 (± 1.37) 98.60 (± 0.53)
Runners DUCT Exp3 RM SUCT
DUCT 91.10 (± 1.26) 79.80 (± 2.13) 51.45 (± 3.06)
Exp3 8.90 (± 1.26) 38.30 (± 1.39) 10.30 (± 1.31)
RM 20.20 (± 2.13) 61.70 (± 1.39) 20.45 (± 2.14)

SUCT 48.55 (± 3.06) 89.70 (± 1.31) 79.55 (± 2.14)
Tron DUCT Exp3 RM SUCT

DUCT 59.80 (± 2.54) 77.95 (± 2.31) 46.50 (± 2.40)
Exp3 40.20 (± 2.54) 76.20 (± 2.36) 41.85 (± 2.62)
RM 22.05 (± 2.31) 23.80 (± 2.36) 19.70 (± 2.19)

SUCT 53.50 (± 2.40) 58.15 (± 2.62) 80.30 (± 2.19)

TABLE II: Performance of each variant vs. each variant in
every game. Win rate is for the variant in the listed row.

particularly well [12], [15]. However, in this general context
with random playout policies, the advantage of DUCB1T is
certainly less clear, as in the original work in Tron [10].

Interestingly, in Goofspiel and Oshi-Zumo, Regret Match-
ing performs significantly better than DUCT. Exp3 also out-
performs DUCT in Goofspiel. Again, this is consistent with
previous results in Goofspiel [13]. Both Goofspiel and Oshi-
Zumo have been solved [17], [18] and their optimal strategies
are mixed distributions. In Goofspiel, any deterministic strat-
egy has a best response that exploits it by a lot, so mixing
is important. These stochastic selection strategies, which con-
verge to mixed distributions, are likely to be more effective in
games where the optimal strategy requires mixing. In the case
of Goofspiel, RM wins an outstanding 95.0% of games against
DUCT. This shows that the performance of these variants can
vary significantly depending on the game type.

A surprising result is that the performance results are not
always transitive. For example, in Goofspiel, DUCT beats
SUCT, but loses from RM. However, SUCT beats RM in
Goofspiel. We believe this effect could be due to algorithms in

Game \ Variant Exp3 RM SUCT
Battle 0.00 (± 0.00) 0.00 (± 0.00) 40.10 (± 2.38)

BiddingTicTacToe 38.55 (± 2.90) 47.85 (± 3.01) 49.00 (± 2.92)
Chinook 8.25 (± 1.68) 0.60 (± 0.48) 32.00 (± 2.87)
Goofspiel 49.85 (± 2.54) 95.00 (± 1.34) 26.15 (± 2.40)
OshiZumo 18.65 (± 1.86) 70.60 (± 2.58) 17.95 (± 1.86)

PawnWhopping 25.70 (± 1.58) 1.40 (± 0.53) 50.10 (± 0.14)
RacetrackCorridor 38.65 (± 1.41) 1.10 (± 0.45) 50.05 (± 0.22)

Runners 8.90 (± 1.26) 20.20 (± 2.13) 48.55 (± 3.06)
Tron 40.20 (± 2.54) 22.05 (± 2.31) 53.50 (± 2.40)

TABLE III: Performance playing against DUCT in each game.

DUCT SUCT Exp3 RM
Win Rate 68.34 ± 0.48 63.36 ± 0.50 38.77 ± 0.51 29.54 ± 0.51

TABLE IV: Win rate summary, over all games played.

simultaneous move games being sensitive to the parameters.
As these parameters are tuned in self play, it could be that
parameters were overfit, because the optimal parameter value
for a certain algorithm also depends on the algorithm used by
the opponent. Also, due to the importance of mixing in some
of the games, it is possible that there could be a “Rock-Paper-
Scissors”-like effect of one variant acting as a best response
to the other. Therefore, care must be taken when determining
which parameter set to use for each search variant. These
results suggest that systematic testing against several different
variants is prudent in determining robust parameter settings.

Table III shows the summary of the win rates of alternative
algorithms against DUCT. This table is important, because
DUCT is the standard technique often used in the GGP
competitions. Based on these results in Table III it seems that
DUCT indeed performs well in most games. This is consistent
with the existing successes in general game playing.

A summary of the performance results is given in Table IV.
DUCT seems to be a safe choice for these nine games, winning
68.34% of games overall. However, Sequential UCT, winning
63.36% of games, is not too far behind, can be easier to
implement, and does seem to perform well against Regret
Matching in mixing games such as Goofspiel.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented simultaneous move MCTS and
several variants, evaluating their performance in nine games
used in the general game playing. We investigate several
variants: Decoupled UCT, Sequential UCT, Exp3, and Regret
Matching. The performance of each variant is evaluated in nine
games used in the general game playing literature.

This work leads to three main conclusions. First, the
expected behavior of each variant varies with respect to
parameter values in simultaneous move MCTS. Finding the
correct parameters seems to depend on the game and variant
being used, and can vary significantly even against a fixed
opponent. This could be explained by the different nature
of simultaneous move games and techniques used in search
variants. Second, the performance of each variant seems to



depend on both the game and the opponent. In games where
mixing is important, then the mixed strategies computed by
Regret Matching seem to offer better performance, but in
some cases this can even be superseded by Sequential UCT.
These intransitive performance rankings suggest that obtaining
a robust parameter setting may require more effort than in
purely sequential games. Lastly, Decoupled UCT does seem
to perform best overall in these games, somewhat justifying
its success in general game playing.

For future work, we would like to also measure the effect
that the simultaneous move MCTS-Solver [28, Chapter 6] has
on these SM-MCTS variants, and test the performance of the
different SM-MCTS variants under different circumstances.
For example, by changing the time settings, by using a fixed
parameter value per variant or by using techniques from
general game playing that improve the playouts [5]. It could
be interesting to compare performance of SM-MCTS against
well-known benchmark players, such as Goofspiel competition
strategies [29]. Also, SM-MCTS could be used as a high-level
multi-stage planner in real-time strategy games by treating the
move of each agent as long-term scripts, extending related
previous work in this area [30]. Furthermore, we would like
to extend our SM-MCTS variants to games with more than
two players, for example as a strategic reasoner module in
the seven-player simultaneous move game Diplomacy [31].
Moreover, it would be interesting to investigate how the
performance of the methods depends on game complexity,
using a synthetic game tree analysis similar to [14]. In addition,
we could compare the algorithms on different time settings
against optimal players in games that can be solved.
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