
MCRNR: Fast Computing of Restricted Nash Responses by Means of Sampling

Marc Ponsen1 and Marc Lanctot 2 and Steven de Jong13

1: Department of Knowledge Engineering, Maastricht University, Maastricht, Netherlands
2: Department of Computer Science, University of Alberta, Edmonton, Alberta, Canada

3: Computational Modeling Lab, Vrije Universiteit Brussel, Brussel, Belgium

Abstract

This paper presents a sample-based algorithm for the compu-
tation of restricted Nash strategies in complex extensive form
games. Recent work indicates that regret-minimization algo-
rithms using selective sampling, such as Monte-Carlo Coun-
terfactual Regret Minimization (MCCFR), converge faster
to Nash equilibrium (NE) strategies than their non-sampled
counterparts which perform a full tree traversal. In this pa-
per, we show that MCCFR is also able to establish NE strate-
gies in the complex domain of Poker. Although such strate-
gies are defensive (i.e. safe to play), they are oblivious to op-
ponent mistakes. We can thus achieve better performance by
using (an estimation of) opponent strategies. The Restricted
Nash Response (RNR) algorithm was proposed to learn ro-
bust counter-strategies given such knowledge. It solves a
modified game, wherein it is assumed that opponents play
according to a fixed strategy with a certain probability, or to
a regret-minimizing strategy otherwise. We improve the rate
of convergence of the RNR algorithm using sampling. Our
new algorithm, MCRNR, samples only relevant parts of the
game tree. It is therefore able to converge faster to robust best-
response strategies than RNR. We evaluate our algorithm on a
variety of imperfect information games that are small enough
to solve yet large enough to be strategically interesting, as
well as a large game, Texas Hold’em Poker.

Introduction
This paper presents MCRNR, a sample-based algorithm
for the computation of restricted Nash strategies in com-
plex extensive form games. This algorithm combines
the advantages of two state-of-the-art existing algorithms,
i.e., (Monte-Carlo) Counterfactual Regret Minimization
(CFR) (Zinkevich et al., 2008; Lanctot et al., 2009) and
Restricted Nash (RNR) (Johanson, Zinkevich, & Bowling,
2008; Johanson & Bowling, 2009).

CFR and MCCFR. The CFR algorithm was developed to
find approximate NE strategies in complex games (Zinke-
vich et al., 2008). Most notably, using CFR, NE strategies
were computed in an abstracted version of the highly com-
plex game of 2-player limit Texas Hold’em Poker. The algo-
rithm traverses the whole game tree, and updates the strategy
at each iteration. For larger games doing a full tree traversal

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

becomes impractical due to time and memory constraints.
Researchers therefore investigated whether NE strategies
can be computed by means of sampling in the tree. In-
deed, the sampling-based algorithm Monte-Carlo Counter-
factual Regret Minimization (MCCFR) was shown to con-
verge faster to NE strategies than algorithms that perform a
full tree traversal (Lanctot et al., 2009). In this paper, we
show that MCCFR also finds NE strategies in very large
games, by applying it to 2-player limit Texas Hold’em.

RNR. Unlike NE strategies that are oblivious to oppo-
nent play, RNR strategies are robust best-response strategies
given a model of opponent policies (Johanson, Zinkevich, &
Bowling, 2008). It was shown that RNR strategies are ca-
pable of exploiting opponents, with reasonable performance
even when the model is wrong. The RNR algorithm solves
a modified game, wherein it is assumed that the opponent
plays according to a fixed strategy, as specified by the model,
with a certain probability. Otherwise, the opponent plays ac-
cording to a regret-minimizing strategy.1

Our contribution: MCRNR. Given the promising results
of applying sampling in CFR, we extend the original RNR
algorithm with sampling. Our new algorithm, MCRNR, ben-
efits from sampling only relevant parts of the game tree. The
algorithm is therefore able to converge very quickly to ro-
bust best-response strategies in example Poker-like games,
as well as in the large complex game of 2-player limit Texas
Hold’em Poker.

Background
In this section we give an overview of the concepts required
to describe our algorithm. For details, refer to Osborne &
Rubinstein (1994). An extensive game is a general model of
sequential decision-making with imperfect information. As
with perfect information games (such as Chess or Checkers),
extensive games consist primarily of a game tree: each non-
terminal node has an associated player (possibly chance)
that makes the decision at that node, and each terminal node

1The Data-Biased Response algorithm is similar, except that
the choice of whether the opponent plays according to the model
is done separately at each information set. The confidence of the
model depends on the visiting frequencies of information sets (Jo-
hanson & Bowling, 2009).

has associated utilities for the players. Additionally, game
states are partitioned into information sets Ii where a player
i cannot distinguish between states in the same informa-
tion set. The players, therefore, must choose actions with
the same distribution at each state in the same information
set. In this paper, we focus on 2-player extensive games.

A strategy of player i, σi, is a function that assigns a dis-
tribution over A(Ii) to each Ii ∈ Ii, where Ii is an informa-
tion set belonging to i, andA(Ii) is the set of actions that can
be chosen at that information set. We denote Σi as the set of
all strategies for player i. A strategy profile, σ, consists of a
strategy for each player, σ1, . . . , σn. We let σ−i refer to the
strategies in σ excluding σi.

Valid sequences of actions in the game are called histo-
ries, denoted h ∈ H . A history is a terminal history, h ∈ Z
where Z ⊂ H , if its sequences of actions lead from root to
leaf. A prefix history h v h′ is one where h′ can be ob-
tained by taking a valid sequence of actions from h. Given
h, the current player to act is denoted P (h). Each informa-
tion set contains one or more valid histories. We assume the
standard assumption of perfect recall: information sets are
defined by the information that was revealed to each player
over the course of a history assuming infallible memory.2

Let πσ(h) be the probability of history h occurring if
all players choose actions according to σ. We can decom-
pose πσ(h) into each player’s contribution to this probabil-
ity. Here, πσi (h) is the contribution to this probability from
player i when playing according to σ. Let πσ−i(h) be the
product of all players’ contribution (including chance) ex-
cept that of player i. Finally, let πσ(h, z) = πσ(z)/πσ(h)
if h v z, and zero otherwise. Let πσi (h, z) and πσ−i(h, z)
be defined similarly. Using this notation, we can define the
expected payoff for player i as ui(σ) =

∑
h∈Z ui(h)πσ(h).

Given a strategy profile, σ, we define a player’s best re-
sponse as a strategy that maximizes their expected payoff
assuming all other players play according to σ. The best-
response value for player i is the value of that strategy,
bi(σ−i) = maxσ′

i∈Σi ui(σ
′
i, σ−i). An ε-Nash equilibrium

is an approximation of a Nash equilibrium; it is a strategy
profile σ that satisfies

∀i ∈ N ui(σ) + ε ≥ max
σ′
i∈Σi

ui(σ
′
i, σ−i) (1)

If ε = 0 then σ is a Nash equilibrium: no player has any in-
centive to deviate as they are all playing best responses. If a
game is two-player and zero-sum, we can use exploitability
as a metric for determining how close σ is to an equilibrium,
εσ = b1(σ2) + b2(σ1).

Monte Carlo CFR
Imagine the situation where players are playing with strat-
egy profile σ. Players may regret using their strategy σi

2Perfect recall is required for convergence guarantees of the al-
gorithms we mention in this paper. However, it has been shown
in practice that relaxing this assumption can lead to large compu-
tational savings without significantly affecting the performance of
the resulting strategy (Waugh et al., 2009; Risk & Szafron, 2010).
Therefore, we will relax this assumption for our experiments on
Texas Hold’em Poker.

against σ−i to some extent. In particular, for some infor-
mation set I they may regret not taking a particular action
a instead of following σi. Let σI→a be a strategy identical
to σ except a is taken at I . Let ZI be the subset of all ter-
minal histories where a prefix of the history is in the set I;
for z ∈ ZI let z[I] be that prefix. Since we are restricting
ourselves to perfect recall games z[I] is unique.2 The coun-
terfactual value vi(σ, I) is defined as:

vi(σ, I) =
∑
z∈ZI

πσ−i(z[I])πσ(z[I], z)ui(z). (2)

Counterfactual regret minimization (CFR) algorithm applies
a no-regret learning policy at each information set over these
counterfactual values (Zinkevich et al., 2008). Each player
starts with an initial strategy and accumulates a counterfac-
tual regret for each action at each information set r(I, a) =
v(σI→a, I)−v(σ, I) through self-play (game tree traversal).
Minimizing the regret of playing σi at each information set
also minimizes the overall external regret, and so the average
strategies approach a Nash equilibrium.

Monte-Carlo Counterfactual Regret Minimization (MC-
CFR) (Lanctot et al., 2009) avoids traversing the entire
game tree on each iteration while still having the immedi-
ate counterfactual regrets be unchanged in expectation. Let
Q = {Q1, . . . , Qr} be a set of subsets of Z, such that their
union spans the set Z. These Qj are referred to as blocks of
terminal histories. MCCFR samples one of these blocks and
only considers the terminal histories in the sampled block.
Let qj > 0 be the probability of considering block Qj for
the current iteration (where

∑r
j=1 qj = 1).

Let q(z) =
∑
j:z∈Qj qj , i.e., q(z) is the probability of

considering terminal history z on the current iteration. The
sampled counterfactual value when updating block j is:

ṽi(σ, I|j) =
∑

z∈Qj∩ZI

1

q(z)
πσ−i(z[I])πσ(z[I], z)ui(z) (3)

Selecting a set Q along with the sampling probabilities de-
fines a complete sample-based CFR algorithm. Rather than
doing full game tree traversals the algorithm samples one of
these blocks, and then examines only the terminal histories
in that block.

Sampled counterfactual matches counterfactual value on
expectation. That is, Ej∼qj [ṽi(σ, I|j)] = vi(σ, I). So, MC-
CFR samples a block and for each information set that con-
tains a prefix of a terminal history in the block we com-
pute the sampled immediate counterfactual regrets of each
action, r̃(I, a) = ṽi(σ

t
(I→a), I) − ṽi(σ

t, I). These sam-
pled counterfactual regrets are accumulated, and the player’s
strategy on the next iteration is determined by the regret-
matching rule to the accumulated regrets (Hart & Mas-
Colell, 2000). This rule assigns a probability to an action
in an information set. Define r+

I [a] = max{0, rI [a]}. Then:

σ(I, a) =

1/|A(I)| if ∀a ∈ A(I) : rI [a] ≤ 0
r+I [a]∑

a∈A(I) r
+
I [a]

if rI [a] > 0

0 otherwise.
(4)

where rI [a] is the cumulative sampled counterfactual regret
of taking action a at I . If there is at least one positive regret,
each action with positive regret is assigned a probability that
is normalized over all positive regrets and the actions with
negative regret are assigned probability 0. If all the regrets
are negative, then the strategy is reset to a default uniform
random strategy.

There are different ways to sample parts of the game tree.
In this paper we will focus on Outcome-Sampling MC-
CFR. In outcome-sampling MCCFR Q is chosen so that
each block contains a single terminal history, i.e., ∀Q ∈
Q, |Q| = 1. On each iteration one terminal history is sam-
pled and only updated each at information set along that
history. The sampling probabilities, Pr(Qj) must specify a
distribution over terminal histories. MCCFR specifies this
distribution using a sampling profile, σ′, so that Pr(z) =

πσ
′
(z).

The algorithm works by sampling z using policy σ′, stor-
ing πσ

′
(z). In particular, an ε-greedy strategy is used to

choose the successor history: with probability ε choose uni-
formly randomly and probability 1 − ε choose based on the
current strategy. The single history is then traversed forward
(to compute each player’s probability of playing to reach
each prefix of the history, πσi (h)) and backward (to compute
each player’s probability of playing the remaining actions
of the history, πσi (h, z)). During the backward traversal, the
sampled counterfactual regrets at each visited information
set are computed (and added to the total regret). Here,

r̃(I, a) =

{
wI(π

σ(z[I]a, z)− πσ(z[I], z)) if z[I]a v z
−wIπσ(z[I], z) otherwise

where wI =
ui(z)π

σ
−i(z[I])

πσ′(z)
(5)

Lanctot et al. (2009) provides a more in-depth discussion,
including convergence proofs.

Monte Carlo Restricted Nash (MCRNR)
Regret minimization algorithms, as discussed in the previous
section, learn an approximate NE strategy, i.e., the best pos-
sible worst-case strategy. Such a strategy treats opponents
as rational players and is oblivious to opponent mistakes.
When facing a predictable and inferior opponent, a tailored
counter-strategy will earn more utility than a rational strat-
egy. Given an accurate estimation (i.e. model) of the oppo-
nent strategy, one can compute a best-response strategy that
maximally exploits it. However, opponent specific counter-
strategies may be very brittle, and only perform well against
the opponent they were trained against. Johanson, Zinke-
vich, & Bowling (2008) empirically showed in the game of
Poker that this was indeed the case. The authors also show
that a NE strategy only wins by small margins, even against
extremely exploitable opponents. The authors formulated a
solution, namely a restricted Nash response that balances (1)
performance maximization against the model and (2) rea-
sonable performance even when the model is wrong.

RNR. More specifically, calculating the RNR response re-
quires a model for the opponent. Suppose in a 2-player

game, the opponent (i.e. restricted) player is player 2, then
this model is σfix ∈ Σ2. Define Σ

p,σfix
2 to be the set of

mixed strategies of the form pσfix + (1 − p)σ2 where σ2

is an arbitrary strategy in Σ2. The set of restricted best re-
sponses to σ1 ∈ Σ1 is:

BRp,σfix(σ1) = argmax
σ2∈Σ

p,σfix
2

(u2(σ1, σ2)) (6)

A (p, σfix) RNR equilibrium is a pair of strategies
(σ∗1 , σ

∗
2) where σ∗2 ∈ BRp,σfix(σ∗1) and σ∗1 ∈ BR(σ∗2). In

this pair, the strategy σ∗1 is a p-restricted Nash response to
σfix. These are counter-strategies for σfix, where p provides
a balance between exploitation and exploitability. Johanson,
Zinkevich, & Bowling further proved that among all strate-
gies that are at most ε-suboptimal, these strategies are among
the best responses. They used the CFR algorithm to solve
a modified game, wherein it is assumed that the opponent
plays according to the fixed (model-provided) strategy with
a certain probability, and according to a regret-minimizing
strategy otherwise. Consequently, the algorithm requires a
full sweep through the game tree.

MCRNR. In this paper, we extend the original RNR algo-
rithm with sampling. The resulting new algorithm, MCRNR
(for Sampled Restricted Nash), benefits from sampling only
relevant parts of the game-tree. It is therefore able to
converge very fast to robust best-response strategies. The
pseudo-code of the algorithm is provided in Algorithm 1.

We will now explain the pseudo-code. We first assign a
player, pr, that is restricted to sometimes play using the fixed
model. The SET MODEL CONFIDENCE routine returns a
value in [0, 1]. The value represents the confidence of the
model at the specific information set. In the original RNR
paper, this is the value p used to trade-off exploitation for
exploitability. When learning the model from data it makes
sense to have different values per information set because
the confidence depends on how many observations are avail-
able per information set; counter-strategies using a model
built from data are called Data-Biased Responses (Johan-
son & Bowling, 2009). We then sample a terminal history
h ∈ Z, either selecting actions based on a provided op-
ponent model, or based on the strategy obtained by regret-
matching. The REGRET MATCHING routine assigns a prob-
ability to an action in an information set (according to Equa-
tion 4). The sampling routine SELECT samples action a
with probability ε/|A(I)| + (1 − ε)σi(I, a). At a terminal
node, utilities are determined and backpropagated through
all z[I] @ z.

Regret and average strategy updates are applied when the
algorithm returns from the recursive call, in lines 17 to 22.
On line 19 we add the sampled counterfactual regret (ac-
cording to Equation 5) to the cumulative regret. On line 20
the average strategy is updated using optimistic averaging,
which assumes that nothing has changed since the last visit
at this information set. Finally, the strategy tables are up-
dated before a new iteration starts. This process is repeated
a number of times until satisfactory and there is one instance
for each different player assigned to be the restricted player.
At any iteration, the average strategy σ(I, a) can be obtained

initialize: Information set markers: ∀I, cI ← 0
initialize: Regret tables: ∀I, rI [a]← 0
initialize: Strategy tables: ∀I, sI [a]← 0
initialize: Initial strategy: σ(I, a) = 1/|A(I)|
input : A starting history h
input : A sampling scheme S (ε-greedy)
input : An opponent modelM for rest. player pr
input : Current iteration t
Recursion Base Case:1
if h ∈ Z then2

z ← h3

return (ui(z), π
σ′

(z), πσ(z))4

Select Terminal Node:5
pConf ← SET MODEL CONFIDENCE(Ii)6
i← P (h)7
if (i = pr) and (rand(1) < pConf) then8

σi ←M(Ii)9
else10

σi ← REGRET MATCHING(rIi)11
σ′i ← S(σi)12
h′ ← SELECT(h, σ′i)13
Recurse:14
MCRNR(h′,S,M, t)15
Determine Utilities and Update:16
i← P (h)17
foreach a ∈ A(I) do18

rI [a]← rI [a] + r̃(I, a)19
sI [a]← sI [a] + (t− cI)πσi σi(I, a)20

end21
cI ← t22

return (ui(z), π
σ′

(z), πσ(z))23
Algorithm 1: One iteration of MCRNR

by normalizing sI . When pr = 2 then σ∗1 = σ1. When
pr = 1 then σ∗2 = σ2. Over time, σ∗ = (σ∗1 , σ

∗
2) approaches

an RNR equilibrium.

Experiments and Results
In this section we will discuss two sets of experiments with
MCRNR in some smaller Poker-like games as well as in the
large domain of Texas Hold’em Poker. We start by describ-
ing the games that the algorithm was applied to, and then the
experiments themselves.

Goofspiel is a bidding card game where players have a hand
of cards numbered 1 toN , and take turns secretly bidding on
the top point-valued card in a point card stack using cards in
their hands (Ross, 1971). Our version is less informational:
players only find out the result of each bid and not which
cards were used to bid, and the player with the highest to-
tal points wins. We also use a fixed point card stack that is
strictly decreasing, e.g. (N,N − 1, . . . , 1).

Bluff(1,1,N) also known as Liar’s Dice and Perudo, is a
dice-bidding game. In our version, each player rolls a sin-
gle N -sided die and looks at their die without showing it to
their opponent. Then players, alternately, either increase the
current bid on the outcome all die rolls in play or call the

other player’s bluff (claim that the bid does not hold). The
highest value on the face of a die is wild and can count as
any face value. When a player calls bluff, if the opponent’s
bid is incorrect they win, otherwise they lose.

One-Card Poker (abbreviated OCP(N)), is a generalization
of Kuhn Poker (Gordon, 2005; Kuhn, 1950). The deck con-
tains N cards. Each player must ante a single chip, has one
more chip to bet with, and is dealt one card. We use a deck
of size N = 500.

Leduc Hold’em Poker (abbreviated LHP(R1, R2, B, i)), is
a small game of Poker with a deck containing two suits of
three cards each (Southey et al., 2005). Each player is dealt
one card. There is a first round of betting with a raise amount
of R1 chips. Then a single community card is flipped, and
there is a second round of betting with a raise amount of R2

chips. There is a maximum number of raises per round B.
The i parameter is a switch indicating whether raise amounts
can be integers between 1 and Rn or must be exactly Rn.
The standard Leduc Hold’em Poker has (R1, R2, B, i) =
(2, 4, 2, false).

Texas Hold’em Poker This variant of Poker is played be-
tween at least two players. Players can win games by either
having the best card combination at the end of the game,
or by being the only active player. The game includes four
betting rounds wherein players are allowed to invest money.
Players can remain active by at least matching the largest
investment made by any of the players. This is known as
calling or checking. Players may also decide to bet or raise
a bet, which increases the stakes. Finally, they can choose to
fold (i.e., stop investing money and forfeit the game). Dur-
ing the first betting round, all players are dealt two private
cards that are only known to that specific player. During the
remaining phases an additional 5 board cards appear that
apply to all the players and are used to determine the card
combinations.

Preliminary evidence
We ran two separate sets of experiments for each game ex-
cept Texas Hold’em. The first set aimed to characterize the
relationship between exploitation and exploitability for dif-
ferent values of pConf . The second set of experiments was
a comparison of the convergence rates between the RNR and
MCRNR. In both cases perfect opponent models were used
taken from runs of MCCFR and ε was set to 0.6. Results are
shown in Figures 1 and 2.

Results from the first set of experiments may influence
the choice of pConf . If exploitation is much more im-
portant than exploitability then a value above 0.9 is sug-
gested; on the other hand a noticeable boost in exploita-
tion can be achieved for a small loss of exploitability for
0.5 ≤ pConf ≤ 0.8. Unlike previous results, in every game
except Bluff it seems that the region pConf ∈ [0.97, 1] has
high impact on to the magnitude of this trade-off. Results
from Figure 2 confirm the performance benefit from sam-
pling since MCRNR produces a better NE approximation in
less time, especially in the early iterations. This is particu-
larly important when attempting to learn online, when time
might be limited.

 0

 0.002

 0.004

 0.006

 0.008

 0 0.5 1 1.5 2

E
xp

lo
ita

tio
n

Exploitability

Goof(5)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.3 0.6 0.9 1.2 1.5

E
xp

lo
ita

tio
n

Exploitability

Bluff(1,1,6)

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0 0.01 0.02 0.03 0.04 0.05

E
xp

lo
ita

tio
n

Exploitability

OCP(500)

 0.003

 0.006

 0.009

 0.012

 0.015

 0.018

 0 0.5 1 1.5 2 2.5

E
xp

lo
ita

tio
n

Exploitability

LHP(2,4,2,false)

Figure 1: The trade-off between exploitation and exploitability. The exploitation value is the gain in payoff when using the
MCRNR equilibrium profile vs. a Nash equilibrium profile, summed over pr ∈ {1, 2}. The exploitability is bi(σ−i) summed
over i = pr ∈ {1, 2}. MCRNR was run for roughly three times the number of iterations as the MCCFR run that produced the
opponent models. The value of pConf used, from bottom-left point to top-right point, was: 0, 0.5, 0.7, 0.8, 0.9, 0.93, 0.97, 1.

Larger test domain: Texas Hold’em Poker

We evaluated the policies learned by MCCFR and MCRNR
against two strong opponent bots provided with the soft-
ware tool Poker Academy Pro, namely POKI and SPARBOT.
Policies are evaluated in millibets per hand (mb/h), which
describes the big blinds won per hand, divided by 1000. It
can thus be used to reflect a player’s (or bot’s) playing skill.
For a more detailed explanation of POKI and experiments
with this bot, we refer the reader to Billings (2006). SPAR-
BOT is a bot that plays according to the NE strategy de-
scribed by Billings et al. (2003). It was designed solely for
2-player Poker, in contrast to POKI, which was designed for
multiplayer games. Since SPARBOT specializes in 2-player
games, it is less exploitable in a 2-player game than POKI.

To reduce the complexity of the task of finding NE and
RNR strategies, we decreased the size of the game tree by
applying a 10-bucket discretization (Billings, 2006) on the
cards, along with imperfect recall (i.e., buckets of previous
phases are forgotten). At each phase, the strategic strength

of private cards, along with zero or more board cards, deter-
mines the bucket.

We ran MCCFR using an epsilon-greedy sampling
scheme. As suggested in earlier work (Lanctot et al., 2009),
epsilon was set to the relatively high value of 0.6 to cover a
large area of the search space.

For MCRNR we observed approximately 20K games
played against both POKI and SPARBOT. These games were
used to gather opponent data concerning the two bots. For
our modeling, we used a a standard machine learning tech-
nique. Since the opponent data we gathered is rather sparse
(e.g., Johanson & Bowling (2009) used over 1 million games
instead of 20K) and since a frequency count cannot general-
ize, we chose to apply a standard decision tree to learn an op-
ponent model from the sparse data. We provided the decision
tree with five simple features, namely (1) the starting seat
relative to the button, (2) the sum of bets or raises during the
game, (3) the sum of bets or raises in the current phase, (4)
the sum of bets or raises of the modeled player in the game,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 30000 60000 90000 120000

B
R

 C
on

ve
rg

en
ce

Time (seconds)

Goof(7)

RNR

MCRNR

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20000 40000

B
R

 C
on

ve
rg

en
ce

Time (seconds)

Bluff(1,1,9)

RNR

MCRNR

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0 1000 2000 3000 4000 5000

B
R

 C
on

ve
rg

en
ce

Time (seconds)

OCP(500)

RNR

MCRNR

 0

 2

 4

 6

 8

 10

 0 10000 20000 30000

B
R

 C
on

ve
rg

en
ce

Time (seconds)

LHP(3,6,4,true)

RNR

MCRNR

Figure 2: The convergence rates of RNR versus MCRNR. The y-axis is εσ defined in the Background section summed over
pr ∈ {1, 2}. When computing b−i(σi) and i = pr, the restricted player uses σrest = pConf · σfix + (1− pConf)σi. In these
experiments, pConf was set to 0.5.

and finally (5) the bucket of the modeled player (if it was
observed). For each specific phase, we learn a model that
predicts the strategy of the modeled player. We set pConf
to a fixed value of 0.75. This value is not adapted based on
the experience in a specific information set, as was done in
the data-biased approach Johanson & Bowling (2009).

We ran a number of offline iterations for MCCFR and
MCRNR, froze the policy, and evaluated it. All results are
shown in Table 1. We performed 10K evaluation games for
each player. MCCFR, after a great deal of iterations, wins
by a small margin from POKI, while losing a small amount
from SPARBOT. We may conclude that MCCFR has learned
a near-equilibrium policy.

As expected, MCRNR exploits POKI considerably more
than MCCFR, namely with 369mb/h. Interestingly, as de-
picted in Figure 3, MCRNR has learned to exploit POKI in
about 20 million sampled iterations. We note that in a sam-
pled iteration, only very few nodes are touched (i.e., only
information sets are updated along the history of the sam-
pled terminal node), while in a CFR (and RNR) iteration all

information-sets are updated. Consequently, 20 million sam-
pled iterations with MCCFR maps to far less iterations with
CFR.

Against SPARBOT, an improvement is also observed, but
here, the differences are not significant. It should be noted
that both MCRNR policies were learned within only a frac-
tion of the time (and number of iterations) required by MC-
CFR. We emphasize that MCRNR learned on the basis of
only 20K observed games. In conclusion, MCRNR finds at
least an equally good policy as MCCFR, but uses substan-
tially less effort to do so.

Conclusion
This paper presents MCRNR, a sample-based algorithm
for the computation of restricted Nash strategies in com-
plex extensive form games. This algorithm combines the
advantages of two state-of-the-art existing algorithms, i.e.,
(Monte-Carlo) Counterfactual Regret Minimization and Re-
stricted Nash. MCRNR samples only relevant parts of the
game tree. It is therefore able to converge faster to robust

Figure 3: An online evaluation of MCRNR policy during
learning against POKI. While the bot is playing 1, 000 on-
line games an approximated 6 million offline iterations with
MCRNR are run.

Opponent Algorithm mb/h Iterations

POKI MCCFR 59 5400m
SPARBOT MCCFR -91 5400m
POKI MCRNR 369 200m
SPARBOT MCRNR -39 200m

Table 1: Results of experiments with MCCFR and MCRNR
against two bots . These results are significant to 60 mb/h.
The fourth column gives the amount of offline iterations we
allowed before stopping the algorithm.

best-response strategies than RNR.
Another advantage is that we can gather opponent data

online. Johanson, Zinkevich, & Bowling (2008) gathered
data using a ‘Probe’ bot, which either calls or bets with equal
probability. This opponent makes sure that all parts of the
tree are visited, and actions from each information set are
observed. CFR and RNR make full sweeps through the tree,
and require accurate statistics across the whole tree. In our
case, sampling inherently provides this exploration measure,
and the sample-corrected strategy updates boost the impor-
tance based on how long it has been since the last visit.
So, when rarely-visited information sets are observed, their
updates are more significant. Therefore MCRNR can learn
models on-policy, which is faster (i.e., one gets more rele-
vant observations for an opponent) and more practical (i.e.,
one can model opponents during play, running a ’probe’ bot
is not always possible).

We evaluate our algorithm on a variety of imperfect in-
formation games that are small enough to solve yet large
enough to be strategically interesting, as well as a large
game, Texas Hold’em Poker. In Poker MCRNR learns
strong policies in a short amount of time. For future work
we want to run more extensive experiments in the large do-
main of Poker. We want to gather more accurate statistics

on the performance (robustness) of the algorithms. Further-
more, we are interested in an online application of the algo-
rithm wherein we run MCRNR in the background while in-
crementally building an opponent model from observations.

References
Billings, D.; Burch, N.; Davidson, A.; Holte, R. C.; Schaef-

fer, J.; Schauenberg, T.; and Szafron, D. 2003. Approx-
imating game-theoretic optimal strategies for full-scale
poker. In Gottlob, G., and Walsh, T., eds., Proceedings
of the Eighteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI-03), 661–668. Morgan Kauf-
mann.

Billings, D. 2006. Algorithms and Assessment in Computer
Poker. Ph.D. dissertation. University of Alberta.

Gordon, G. J. 2005. No-regret algorithms for structured
prediction problems. Technical Report CMU-CALD-05-
112, Carnegie Mellon University.

Hart, S., and Mas-Colell, A. 2000. A simple adaptive pro-
cedure leading to correlated equilibrium. Econometrica
68(5):1127–1150.

Johanson, M., and Bowling, M. 2009. Data biased robust
counter strategies. In Proceedings of the Twelfth Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 264–271.

Johanson, M.; Zinkevich, M.; and Bowling, M. 2008. Com-
puting robust counter-strategies. In Advances in Neural
Information Processing Systems 20 (NIPS).

Kuhn, H. W. 1950. Simplified two-person poker. Contribu-
tions to the Theory of Games 1:97–103.

Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte carlo sampling for regret minimization in
extensive games. In Advances in Neural Information Pro-
cessing Systems 22 (NIPS), 1078–1086.

Osborne, M. J., and Rubinstein, A. 1994. A Course in Game
Theory. The MIT Press.

Risk, N. A., and Szafron, D. 2010. Using counterfactual re-
gret minimization to create competitive multiplayer poker
agents. In Ninth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2010).

Ross, S. M. 1971. Goofspiel — the game of pure strategy.
Journal of Applied Probability 8(3):621–625.

Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2005. Bayes’ bluff: Op-
ponent modelling in poker. In Proceedings of the Twenty-
First Conference on Uncertaintyin Artificial Intelligence
(UAI), 550–558.

Waugh, K.; Zinkevich, M.; Johanson, M.; Kan, M.; Schni-
zlein, D.; and Bowling, M. 2009. A practical use of im-
perfect recall. In Proceedings of the 8th Symposium on
Abstraction, Reformulation and Approximation (SARA).

Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione, C.
2008. Regret minimization in games with incomplete in-
formation. In Advances in Neural Information Processing
Systems 20 (NIPS).

