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1 Introduction

The supplementary material presented here first presents a detailed description of the MCCFR algo-
rithm. We then give proofs to Theorems 3, 4, and 5 from the submission Monte Carlo Sampling for
Regret Minimization in Extensive Games. We begin with some preliminaries, then prove a general
result about all members of the MCCFR family of algorithms (Theorem 18 in Section 6). We then
use that result to prove bounds for the MCCFR variants (Theorems 19 and 20 in Section 7). We
finally prove the tightened bound for vanilla CFR (Theorem 21 in Section 8).

2 MCCFR Algorithm

The MCCFR algorithm is presented in detail in Algorithm 1.

In Algorithm 1, the average strategy is updated optimistically by weighting the update to the
average strategy equally for every iteration not seen since the last time the information set was
visited. Note: this can be corrected by maintaining weights at each parent information set which
get updated whenever they are visited, and pushing the values of the weights down as needed (lazy
updating). The average strategy can also be updated stochastically by weighting each update as
the inverse of the probability of reaching the information set. The average strategy, σ̄ is obtained
by normalizing the values of the cumulative strategy tables sI for each action at each information
set I . Although optimistic averaging is not technically a correct average it performs well empirically.

We’ve discussed two novel sampling schemes in this work: outcome-sampling and external sam-
pling.

2.1 Outcome Sampling

When using outcome-sampling, we can do the updates for each player simultaneously on a single
pass over the one sampled terminal history. When z[I]a is a prefix of z (action a was taken at I in
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Algorithm 1 Monte Carlo CFR with optimistic averaging
Require: a sampling scheme S
Initialize information set markers: ∀I, cI ← 0
Initialize regret tables: ∀I, rI [a]← 0.
Initialize cumulative strategy tables: ∀I, sI [a]← 0.
Initialize initial profile: σ(I, a)← 1/|A(I)|
for t = {1, 2, 3, · · · } do

for i ∈ N do
Sample a block of terminal histories Q ∈ Q using S
for each prefix history z[I] of a terminal history z ∈ Q with P (z[I]) = i do

for a ∈ A(I) do
Let r̃ = r̃(I, a), the sampled counterfactual regret
rI [a]← rI [a] + r̃
sI [a]← sI [a] + (t− cI)πσi σi(I, a)

end for
cI ← t
σi ← RegretMatching(rI)

end for
end for

end for

our sampled history) then

r̃(I, a) = ṽi(σt(I→a), I)− ṽi(σt, I) (1)

=
ui(z)πσ−i(z[I])πσ(z[I]a, z)

πσ′(z)
−
ui(z)πσ−i(z[I])πσ(z[I], z)

πσ′(z)
(2)

=
ui(z)πσ−i(z[I])

πσ′(z)
(πσ(z[I]a, z)− πσ(z[I], z)) (3)

= W · (πσ(z[I]a, z)− πσ(z[I], z)) (4)

where

W =
ui(z)πσ−i(z[I])

πσ′(z)
(5)

When z[I]a is not a prefix of z, then ṽi(σt(I→a), I) = 0, so

r̃(I, a) = 0− ṽi(σt, I) (6)
= −W · πσ(z[I], z) (7)

2.2 External Sampling

When using external sampling, we update for each player separately (one pass over the tree for each
player). When updating I belonging to player i and z[I]a is a prefix of z, then πσ−i(z[I], z) =
πσ−i(z[I]a, z) since a is taken by i, not the opponent. Also note that q(z) = πσ−i(z). We have the
regret:
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r̃(I, a) = ṽi(σt(I→a), I)− ṽi(σt, I) (8)

=
∑

z∈Q∩ZI

ui(z)πσ−i(z[I])
q(z)

(πσ(z[I]a, z)− πσ(z[I], z)) (9)

=
∑

z∈Q∩ZI

ui(z)πσ−i(z[I])πσ−i(z[I], z)
q(z)

(
πσ(z[I]a, z)− πσ(z[I], z)

πσ−i(z[I], z)

)
(10)

=
∑

z∈Q∩ZI

ui(z)πσ−i(z)
q(z)

(πσi (z[I]a, z)− πσi (z[I], z)) (11)

=
∑

z∈Q∩ZI

ui(z) (πσi (z[I]a, z)− πσi (z[I], z)) (12)

In practice, r̃(I, a) can be computed for all a ∈ A(I) directly from Equation 12 by splitting the sum
into two terms and recursively traversing the sub-tree under each action in I .

3 Preliminaries

There are several basic properties of random variables and real numbers that are necessary to prove
the main results.

Lemma 1 For any random variable X:

Pr[|X| ≥ k
√

E[X2]] ≤ 1
k2
. (13)

Proof: Markov’s Inequality states, if Y is always non-negative:

Pr[Y ≥ jE[Y ]] ≤ 1
j
. (14)

By setting Y = X2:

Pr[X2 ≥ jE[X2]] ≤ 1
j

(15)

Pr[|X| ≥
√
jE[X2]] ≤ 1

j
. (16)

Replacing k =
√
j:

Pr[|X| ≥ k
√

E[X2]] ≤ 1
j2
. (17)

Lemma 2 If a1 . . . , an are non-negative real numbers in the interval [0, 1] where
∑n
i=1 ai = S,

then
∑n
i=1(ai)2 ≤ S.

Proof: Assume without loss of generality that n ≥ dSe..
Suppose that there are two elements ai,aj , where ai < 1 and aj < 1. If ai + aj ≤ 1, then:

(ai)2 + (aj)2 ≤ (ai)2 + 2aiaj + (aj)2 (18)

≤ (ai + aj)2. (19)
Thus, it is better to have (ai + aj , 0). If ai + aj > 1, then define A = ai + aj , and define
f(x) = (A− x)2 + x2. Setting the derivative to zero:

0 = f ′(x) (20)

f ′(x) = −2(A− x) + 2x (21)
2A = 4x (22)
A

2
= x (23)
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Upon further observation, f ′′(x) = 4, implying that A
2 is a minimal point. Therefore, since the

critical points of f(x) are A
2 and the limits of the feasible region, namely A − 1, and 1, then the

limits of the feasible region must be the maximal points.

Therefore, for any two ai and aj , either:

1. One or the other is zero, or:

2. One is equal to the other.

Therefore, there can be no more than one i such that ai ∈ (0, 1), all others must be equal to zero
or one. Define i∗ = bSc. Without loss of generality, assume for all i ∈ {1 . . . i∗}, ai = 1,
ai∗+1 = S − bSc, and for all i ∈ {i∗ + 2 . . . n}, ai = 0. The result follows directly.

Lemma 3 If a1 . . . , an are non-negative real numbers where
∑n
i=1 ai = S, then

∑n
i=1

√
ai ≤√

Sn.

Proof: We prove this by induction on n. If n = 1, then the result is trivial. Otherwise, define
x =

∑n
i=1 ai, so that an + x = S, and therefore by induction

∑n
i=1

√
ai ≤

√
x(n− 1) +

√
S − x.

Define f(x) =
√
x(n− 1) +

√
S − x. To maximize f(x), we observe that 0 and S are critical

points, and we take the derivative and set it to zero:
f ′(x) = 0 (24)

f ′(x) =
0.5(n− 1)√
x(n− 1)

− 0.5√
S − x

(25)

0.5
√
n− 1√
x

=
0.5√
S − x

(26)

x

n− 1
= S − x (27)

x

(
1 +

1
n− 1

)
= S (28)

x

(
n− 1 + 1
n− 1

)
= S (29)

x =
S(n− 1)

n
(30)

Therefore, substituting the three critical points yields:

f(0) =
√
S (31)

f(S) =
√
S(n− 1) (32)

f

(
S(n− 1)

n

)
=

√
S(n− 1)(n− 1)

n
+

√
S − S(n− 1)

n
(33)

= (n− 1)

√
S

n
+

√
S

n
(34)

=
√
Sn (35)

The maximum of these is
√
Sn, establishing the inductive step.

Lemma 4 If b1 . . . , bn are non-negative real numbers where
∑n
i=1 b

2
i = S, then

∑n
i=1 bi ≤

√
Sn.

Proof: Let ai = b2i and apply Lemma 3.

Lemma 5 Given nonnegative reals ai,j in [0, 1], where
∑m
i=1

∑n
j=1 am,n = S, then:

m∑
i=1

√√√√ n∑
j=1

(am,n)2 ≤
√
mS. (36)
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4 Blackwell’s Approachability Theorem

Consider the following more sophisticated bound for the regret matching procedure using Black-
well’s approachability.

Lemma 6 For all real a, define a+ = max(a, 0). For all a, b, it is the case that(
(a+ b)+

)2 ≤ (a+)2 + 2(a+)b+ b2 (37)

Proof: We prove this by enumerating the possibilities:

1. a ≤ 0. Then a+ = 0, so we have: (
(a+ b)+

)2 ≤ (b+)2 (38)

≤ b2, (39)

and:

(a+)2 + 2(a+)b+ b2 = b2. (40)

2. a ≥ 0,b ≥ −a. Then a = a+ and (a+ b)+ = (a+ b). So:(
(a+ b)+

)2 = (a+ b)2. (41)

Also:

(a+)2 + 2(a+)b+ b2 = a2 + 2ab+ b2 (42)

= (a+ b)2 (43)

3. a ≥ 0, b ≤ −a. Then a = a+, and (a+ b)+ = 0. So:(
(a+ b)+

)2 = 0. (44)

Also:

(a+)2 + 2(a+)b+ b2 = a2 + 2ab+ b2 (45)

= (a+ b)2 (46)
≥ 0 (47)

Define R+P
,T =

∑
a∈AR

+
T (a). Regret matching is a strategy σT+1 where:

σT+1(a) =


R+

T (a)

R+P
,T

if R+P
,T > 0

1
|A| otherwise

(48)

Lemma 7 If regret matching is used, then:∑
a∈A

R+
T (a)rT+1(a) ≤ 0 (49)
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Proof: If R+P
,T ≤ 0, then for all a ∈ A, R+

T (a) = 0, and the result is trivial. Otherwise:∑
a∈A

R+
T (a)rT+1(a) =

∑
a∈A

R+
T (a)(uT+1(a)− uT+1(σt)) (50)

=

(∑
a∈A

R+
T (a)uT+1(a)

)
−

(
uT+1(σt)

∑
a∈A

R+
T (a)

)
(51)

=

(∑
a∈A

R+
T (a)uT+1(a)

)
−

(∑
a′∈A

σT+1(a′)uT+1(a′)

)
R+P

,T (52)

=

(∑
a∈A

R+
T (a)uT+1(a)

)
−

(∑
a′∈A

R+
T (a′)
R+P

,T

uT+1(a′)

)
R+P

,T (53)

=

(∑
a∈A

R+
T (a)uT+1(a)

)
−

(∑
a′∈A

R+
T (a′)uT+1(a′)

)
(54)

= 0 (55)

Theorem 8 Define ∆t to be maxa,a′∈A(ut(a)− ut(a′)). Then regret matching yields:

∑
a∈A

(R+
T (a))2 ≤ 1

T 2

T∑
t=1

|A|(∆t)2. (56)

Proof: We prove this by recursion on T . The base case (for T = 1) is obvious. Assuming this
holds for T − 1, we prove it holds for T . Since RT (a) = (T−1)

T RT−1(a) + 1
T rT (a), by Lemma 6:

(R+
T (a))2 ≤ (

(T − 1)R+
T−1(a)

T
)2 + 2

T − 1
T 2

R+
T−1(a)rT (a) + (

rT (a)
T

)2 (57)

Summing yields:∑
a∈A

(R+
T (a))2 ≤

∑
a∈A

((
T − 1
T

)2

(R+
T−1(a))2 + 2

T − 1
T 2

R+
T−1(a)rT (a) +

1
T 2

(rT (a))2

)
(58)

By Lemma 7,
∑
a∈AR

+
T−1(a)rT (a) = 0, so:

∑
a∈A

(R+
T (a))2 ≤

((
T − 1
T

)2 ∑
a∈A

(R+
T−1(a))2

)
+

(
1
T 2

∑
a∈A

(rT (a))2

)
(59)

By induction: ∑
a∈A

(R+
T−1(a))2 ≤ 1

(T − 1)2

T−1∑
t=1

|A|(∆t)2. (60)

Note that |rT (a)| ≤ ∆T . So:

∑
a∈A

(R+
T (a))2 ≤ 1

T 2

(
T−1∑
t=1

|A|(∆t)2

)
+ |A|(∆T )2. (61)

5 Deterministic Strategies

Before delving into the general proof, we need a few gory details involving deterministic strategies.
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A deterministic strategy σi : Ii → A(i) maps each information set Ii ∈ Ii to an action a ∈ A(Ii).
Define Σ̂i to be the set of deterministic strategies for i, and Σ̂ =

∏
i∈N ′ Σ̂i, and Σ̂−i =

∏
j∈N ′\i Σ̂j .

Define I(h) to be the information set Ii ∈ IP (h) containing h. Given a deterministic strategy profile
σ, we can make it into a function from a history to the next action, defined as σ(h) = σP (h)(I(h)).
The terminal history h(σ) is the unique h ∈ Z such that, for all t ∈ {0 . . . |h|− 1}, σ(h(t)) = ht+1.
An information set I is reached with σ if for some h′ v h(σ), h′ ∈ I . In a game with perfect
recall, define h(σ, I) to be the unique h′ ∈ I where h′ v h(σ).

If no deterministic strategy σi of i allows I to be reached with (σ−i, σi), then I is unreachable with
σ−i.

In a game with perfect recall, given σ−i, each information set Ii ∈ Ii, given two deterministic
strategies σi and σ′i, if σi and σ′i both reach I , then h((σ−i, σi), I) = h((σ−i, σ′i), I). Therefore, if
I is reachable with σ−i we define h(σ−i, I) = h((σ−i, σi), I) for some σi such that I is reached
with (σ−i, σi). In general, for any set S ⊆ N ′, I is reachable with σS = {σ̂i}i∈S if there exists a
set σN ′\S = {σ̂i}i∈N ′\S such that I is reachable with (σS , σN ′\S).

Given a history h′ ∈ H , one can consider what would happen if σ was used to play h′ to termination.
In particular, define h(σ, h′) ∈ Z to be the unique history h ∈ Z such that h′ v h and for all
t ∈ {|h′| . . . |h| − 1}, σ(h(t)) = ht+1. Thus, for all h ∈ H , we can define ui(h′, σ) = ui(h(σ, h′)).

Given ~a, σi obliviously plays ~a if the strategy that plays the actions in ~a deterministically in se-
quence. In particular, for any information set Ii ∈ Ii, define c(Ii) = |Xi(h)|, the length of the
sequence of information sets and actions reached by this player before this information set, for any
h ∈ Ii (in a game with perfect recall, this is well-defined). Therefore, σi(Ii) = ~ac(Ii)+1, or is
arbitrary if c(Ii) + 1 is greater than the number of elements of ~a.

Lemma 9 For any deterministic profile σ−i, for any ~a, if Ii ∈ Ii(~a) is reachable with σ−i, then it
is reachable with (σ−i, σi), where σi obliviously plays ~a.

Proof: Since Ii is reachable with σ−i, then there exists some σi such that Ii is reachable with
(σ−i, σi). By definition, the history h(σ−i, σi) has a prefix h′ ∈ Ii. Define ~a(t) to be the first t
elements of ~a, and define σti to be the strategy that obliviously plays ~a(t), and arbitrary decisions
are equal to σi. We will prove by recursion on t that for all t ≤ ~a, h(σ−i, σti) = h(σ−i, σi). First
of all observe that σ0

i = σi, so the basis of the recursion holds. For the inductive step, we assume
that h(σ−i, σt−1

i ) = h(σ−i, σi), and try to prove that h(σ−i, σti) = h(σ−i, σi). Since h′ ∈ Ii,
then X(h′) = ((I1, a1) . . . (Ik, ak)), and since Ii ∈ Ii(~a), then ~a = (a1, . . . , ak). Therefore,
define h′′ to be the prefix of h′ in It. Note that σt−1

i is in control for all I1 . . . It−1, and then σi
selects at in information set It. However, since σt would have also selected at by definition, then
h(σ−i, σti) = h(σ−i, σt−1

i ) = h(σ−i, σi). Note that changing later actions of σi does not affect
whether or not h′ is played, so that any arbitrary deterministic strategy which is ~a oblivious will
work.

Lemma 10 For any deterministic profile σ−i, for any ~a, there is no more than one reachable Ii ∈
Ii(~a).

Proof: Consider two information sets I ′i, I
′′
i ∈ Ii(~a) where I ′i 6= I ′′i , and for the sake of contra-

diction, assume both are reachable with σ−i. Given a σi which is ~a-oblivious, then I ′i and I ′′i are
both reachable with (σ−i, σi). But there is only one history generated, h(σ−i, σi), and therefore
there must exist h′ ∈ I ′i and h′′ ∈ I ′′i , both prefixes of h(σ−i, σi). But that implies that h′ v h′′

or vice-versa, meaning that in a perfect recall game, the sequence of prior information sets and ac-
tions of either I ′i or I ′′i must include the other, an obvious contradiction to them both having action
sequences of equal size.

Lemma 11 For any strategy σj ∈ Σj , there exists a distribution ρ ∈ ∆(Σ̂j) such that for any
h ∈ H ,

Pr
σ̂j∈ρj

[∀(I, a) ∈ Xj(h), σ̂j(I) = a] = πσj (h). (62)
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Proof: First, we define ρ(σ̂j) to be:

ρ(σ̂j) =
∏
I∈Ij

σj(I)(σ̂j(I)). (63)

In other words, the probability of playing σ̂j is the probability of playing like σ̂j everywhere. Sum-
ming over all actions outside of Xj(h) gives the lemma.

Lemma 12 Given a single player strategy σi ∈ Σi, and ρ generated as in Lemma 11, then:

Pr
σ̂i∈ρ

[Reachσ̂i
i (h)] = πσi

i (h). (64)

Lemma 13 Given a history h ∈ H , Reachσ̂i
i (h) if and only if for all (I, a) ∈ Xi(h), σ̂i(I) = a.

Proof: First, if for all (I, a) ∈ Xi(h), σ̂i(I) = a, then we can define σ̂j such that for all (I, a) ∈
Xj(h), σ̂j(I) = a, and for all I /∈ Xj(h), set σ̂j(I) to be arbitrary. Note that for all h′ v h,
there exists an (I, a) ∈ XP (h′)(h) where h′ ∈ I and h|h′|+1 = a. Therefore, for all h′ v h,
σ̂P (h′)(I) = h|h′|+1, implying that σ̂ reaches h.

If Reachσ̂i
i (h), then there exists a σ̂−i such that h v h(σ̂i, σ̂−i). Therefore, for all h′ v h,

ˆsigma(h′) = h|h′|+1, and σ̂P (h′)(I(h′)) = h|h′|+1. For all (I, a) ∈ Xi(h), I = I(h′′) and
a = h|h′′|+1 for some h′′ v h. Moreover, P (h′′) = i, implying that σ̂i(I(h′′)) = h|h′′|+1.

Corollary 14 Given any h ∈ H , given i ∈ N ′, there exists a σ̂i ∈ Σ̂i that reaches h.

Proof: For any history h, it is easy to construct a strategy which satisfies Lemma 13.

Lemma 15 Given a set of strategies σ̂S = {σ̂i}i∈S , if for all i ∈ S, Reachσ̂i
i (h), then Reachσ̂S

S (h).

Proof: By Corollary 14, for every i ∈ N ′\S, there exists a strategy σ̂i that reaches h. By
Lemma 13, for all i ∈ N ′, for all (I, a) ∈ Xi(h), σ̂i(I) = a. Moreover, this implies that these
strategies reconstruct h.

Lemma 16 For any strategy profile σ−i ∈ Σ−i, there exists a distribution ρ ∈ ∆(Σ̂−i) such that
for all I ∈ Ii, πσ−i

−i (I) =
∑
σ̂−i∈bΣ−i:Reach(σ̂−i,I)

ρ(σ̂−i).

Proof: For all j ∈ N ′\i, using Lemma 11, we generate a strategy ρj ∈ ∆(Σ̂j). Define ρ to be the
distribution over ∆(Σ̂−i) obtained by independently sampling each σ̂j by ρj ; formally,

ρ(σ̂−i) =
∏

j∈N ′\i

ρj(σ̂j). (65)

Consider a history h ∈ H . By Lemma 12, πσj

j (h) = Prσ̂j∈ρj
[Reachσ̂j

j (h)]. Since the strategies are
selected independently:

Pr
σ̂−i∈ρ

[∀j ∈ N ′\i,Reachσ̂j

j (h)] =
∏

j∈N ′\i

Pr
σ̂j∈ρj

[Reachσ̂j

j (h)] (66)

=
∏

j∈N ′\i

πσ̂j (h) (67)

= πσ̂−i(h) (68)

If we sum over all h ∈ I , we get the result.

Lemma 17 For any strategy profile σ−i, for any ~a:∑
I∈Ii(~a)

π
σ−i

−i (I) ≤ 1 (69)

Proof: This follows directly from Lemma 16 and Lemma 10.
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6 General MCCFR Bound

We begin by proving a very general bound applicable to all algorithms in the MCCFR family. First,
define Bi = {Ii(~a) : ~a ∈ ~Ai}, so M =

∑
B∈Bi

√
|B|.

Theorem 18 For any p ∈ (0, 1], when using any algorithm in the MCCFR family such that for all
Q ∈ Q and B ∈ B, ∑

I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])
q(z)

2

≤ 1
δ2

(70)

where δ ≤ 1, then with with probability at least 1− p, average overall regret is bounded by,

RTi ≤
(

1 +
2
√
p

)(
1
δ

)
∆u,iMi

√
|Ai|√

T
. (71)

Proof: Define rti(I, a) to be the unsampled immediate counterfactual regret and r̃ti(I, a) to be the
sampled immediate counterfactual regret. Formally,

rti(I, a) =
(
vi(σt(I→a), I)− vi(σt, I)

)
(72)

r̃ti(I, a) =
(
ṽi(σt(I→a), I)− ṽi(σt, I)

)
(73)

RTi (I) =
1
T

max
a∈A(I)

T∑
t=1

rti(I, a) (74)

R̃Ti (I) =
1
T

max
a∈A(I)

T∑
t=1

r̃ti(I, a) (75)

Let Qt ∈ Q be the block sampled at time t. Note that we can bound the difference between two
sampled counterfactual values for information set I at time t by,(

ṽi(σt(I→a), I)− ṽi(σt, I)
)
≤ ∆t

u,i(I) ≡ ∆u,i

∑
z∈Qt∩ZI

πσ(z[I], z)πσ−i(z[I])
q(z)

(76)

so by our assumption, ∑
I∈B

∆t
u,i(I)2 ≤

∆2
u,i

δ2
(77)

So we can apply Theorem 8, to get,

R̃Ti (I) ≤

√
|A(I)|

∑T
t=1(∆t

u,i(I))2

T
(78)

Using Lemma 4,

∑
I∈B

R̃Ti (I) ≤

√
|B||A(B)|

∑
I∈B

∑T
t=1(∆t

u,i(I))2

T
(79)

≤

√
|B||A(B)|

∑T
t=1

∑
I∈B(∆t

u,i(I))2

T
(80)

≤

√
|B||A(B)|

∑T
t=1 ∆2

u,i/δ
2

T
(81)

≤
∆u,i

√
|B||A(B)|
δ
√
T

(82)

9



The average overall sampled regret then can be bounded by,

R̃Ti ≤
∑
B∈Bi

∑
I∈B

R̃Ti (I) (83)

≤
∑
B∈Bi

∆u,i

√
|B||A(B)|
δ
√
T

(84)

≤
∆u,i

√
|Ai|

∑
B∈Bi

√
|B|

δ
√
T

(85)

≤
∆u,iMi

√
|Ai|

δ
√
T

(86)

We now need to prove that R and R̃ are similar. This last portion is tricky. Since the algorithm
is randomized, we cannot guarantee that every information set is reached, let alone that it has con-
verged. Therefore, instead of proving a bound on the absolute difference of R and R̃, we focus on
proving a probabilistic connection.

In particular, we will bound the expected squared difference between
∑
I∈Ii

RTi (I) and∑
I∈Ii

R̃Ti (I) in order to prove that they are close, and then use Lemma 1 to bound the absolute
value. We begin by focusing on the similarity of the counterfactual regret (RTi (I) and R̃Ti (I))
in every node, by focusing on the similarity of the counterfactual regret of a particular action
at a particular time (rti(I, a) and r̃ti(I, a)). By the Lemma from the main paper, we know that
E[rti(I, a)− r̃ti(I, a)] = 0.

From Lemma 4 we have,

E

(∑
I∈Ii

(RTi (I)− R̃Ti (I))

)2
 ≤ |Ii|∑

I∈Ii

E
[
(RTi (I)− R̃Ti (I))2

]
(87)

So,

(RTi (I)− R̃Ti (I))2 =

(
1
T

max
a∈A(I)

T∑
t=1

rti(I, a)− 1
T

max
a∈A(I)

T∑
t=1

r̃ti(I, a)

)2

(88)

(RTi (I)− R̃Ti (I))2 ≤ 1
T 2

(
max
a∈A(I)

(
T∑
t=1

rti(I, a)−
T∑
t=1

r̃ti(I, a)

))2

(89)

(RTi (I)− R̃Ti (I))2 ≤ 1
T 2

(
max
a∈A(I)

(
T∑
t=1

∣∣rti(I, a)− r̃ti(I, a)
∣∣))2

(90)

Note that if f(x) is monotonically increasing on the non-negative numbers, then f(maxa |xa|) =
maxa f(|xa|).

(RTi (I)− R̃Ti (I))2 ≤ 1
T 2

max
a∈A(I)

(
T∑
t=1

rti(I, a)−
T∑
t=1

r̃ti(I, a)

)2

(91)

(RTi (I)− R̃Ti (I))2 ≤ 1
T 2

∑
a∈A(I)

(
T∑
t=1

rti(I, a)−
T∑
t=1

r̃ti(I, a)

)2

(92)

E[(RTi (I)− R̃Ti (I))2] ≤ 1
T 2

∑
a∈A(I)

T∑
t=1

E[
(
rti(I, a)− r̃ti(I, a)

)2] (93)

The final step is because if t 6= t′, then E[(rti(I, a)− r̃ti(I, a))(rt
′

i (I, a)− r̃t′i (I, a))] = 0, because if
t > t′, then after time t′, r̃t(I, a) is an unbiased estimator of rti(I, a) (and vice-versa). Substituting
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back into Equation 87:

E

[
(
∑
I∈Ii

(RTi (I)− R̃Ti (I)))2

]
≤ |Ii|

T 2

∑
I∈Ii

∑
a∈A(I)

T∑
t=1

E
[(
rti(I, a)− r̃ti(I, a)

)2]
(94)

≤ |Ii|
T 2

T∑
t=1

∑
B∈Bi

∑
a∈A(B)

∑
I∈B

E
[(
rti(I, a)− r̃ti(I, a)

)2]
(95)

By Equation 72, |rti(I, a)| ≤ ∆u,iπ
σt

−i(I). From Equation 76, |r̃ti(I, a)| ≤ ∆t
u,i(I). Thus,

E
[
(rti(I, a)− r̃ti(I, a))2

]
≤ E

[
(rti(I, a))2 + (r̃ti(I, a))2

]
(96)

≤ ∆2
u,iπ

σt

−i(I)2 + ∆t
u,i(I)2 (97)

Note that for all B ∈ B, by Lemma 17:∑
I∈B

∆2
u,iπ

σt

−i(I)2 ≤
∑
I∈B

∆2
u,iπ

σt

−i(I) ≤ ∆2
u,i

∑
I∈B

πσ
t

−i(I) ≤ ∆2
u,i (98)

Along with Equation 77, and the fact that δ ≤ 1 this means,∑
I∈B

E
[
(rti(I, a)− r̃ti(I, a))2

]
≤ ∆2

u,i +
∆2
u,i

δ2
(99)

≤ 2
∆2
u,i

δ2
(100)

Returning to Equation 95,

E

(∑
I∈Ii

(RTi (I)− R̃Ti (I))

)2
 ≤ |Ii|

T 2

T∑
t=1

∑
B∈Bi

∑
a∈A(B)

2
∆2
u,i

δ2
(101)

≤
2|Ii|∆2

u,i

δ2T

∑
B∈Ii

|A(B)| (102)

Thus by Lemma 1, with probability at least 1− p,

RTi ≤
√

2|Ii||Bi||Ai|∆u,i

δ
√
pT

+
∆u,iM

√
|Ai|

δ
√
T

(103)

Since M ≥
√
|Ii||Bi|,

RTi ≤

(
1 +
√

2
√
p

)(
1
δ

)
∆u,iM

√
|Ai|√

T
(104)

7 Specific MCCFR Variants

We can now apply Theorem 18 to prove a regret bound for outcome-sampling and external-sampling.

7.1 Outcome-Sampling

Theorem 19 For any p ∈ (0, 1], when using outcome-sampling MCCFR where ∀z ∈ Z either
πσ−i(z) = 0 or q(z) ≥ δ > 0 at every timestep, with probability 1 − p, average overall regret is
bounded by

RTi ≤

(
1 +
√

2
√
p

)(
1
δ

)
∆u,iMi

√
|Ai|√

T
(105)
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Proof: We simply need to show that,

∑
I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])
q(z)

2

≤ 1
δ2
. (106)

Note that for allQ ∈ Q, |Q| = 1. Also note that for anyB ∈ Bi there is at most one I ∈ B such that
Q ∩ ZI 6= ∅. This is because all the information sets in Q ∩ ZI all have player i’s action sequence
of a different length, while all information sets in B have player i’s action sequence being the same
length. Therefore, only a single term of the inner sum is ever non-zero.

Now by our assumption, for all I and z ∈ ZI where πσ−i(z) > 0,

πσ(z[I], z)πσ−i(z[I])
q(z)

≤ 1
δ

(107)

as all the terms of the numerator are less than 1. So the one non-zero term is bounded by 1/δ and so
the overall sum of squares must be bounded by 1/δ2.

7.2 External-Sampling

Theorem 20 For any p ∈ (0, 1], when using external-sampling MCCFR, with probability at least
1− p, average overall regret is bounded by

RTi ≤

(
1 +
√

2
√
p

)
∆u,iMi

√
|Ai|√

T
. (108)

Proof: We will simply show that,

∑
I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])
q(z)

2

≤ 1 (109)

Since q(z) = πσ−i(z), we need to show,

∑
I∈B

 ∑
z∈Q∩ZI

πσi (z[I], z)

2

≤ 1 (110)

Let σ̂t be a deterministic strategy profile sampled from σt where Q is the set of histories consistent
with σ̂t−i. So Q∩ZI 6= ∅ if and only if I is reachable with σ̂t−i. By Lemma 10, for all B ∈ Bi there
is only one I ∈ B that is reachable; name it I∗. Moreover, there is a unique history in I∗ that is a
prefix of all z ∈ Q ∩ ZI∗ ; name it h∗. So for all z ∈ Q ∩ ZI∗ , z[I∗] = h∗. This is because σ̂tt−i
uniquely specifies the actions for all but player i and B uniquely specifies the actions for player i
prior to reaching I∗.

Define ρ to be a strategy for all players (including chance) where ρj 6=i = σ̂j but ρi = σi. Consider
a z ∈ Q ∩ ZI . z must be reachable by σ̂−i, so πρ−i(z) = 1. So∑

z∈Q∩ZI∗

πσi (z[I∗], z) =
∑

z∈Q∩ZI∗

πρi (h∗, z) (111)

=
∑

z∈Q∩ZI∗

πρ(h∗, z) (112)

≤
∑
z∈ZI∗

πρ(h∗, z) ≤ 1 (113)

So, ∑
I∈B

 ∑
z∈Q∩ZI

πσi (z[I], z)

2

≤ 1 (114)
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8 Vanilla CFR: A Tighter Bound

In the final proof we use some of the same ideas of the previous proofs to tighten the original bound
of vanilla CFR, so the bound depends on Mi rather than |Ii| as with the MCCFR variants.

Theorem 21 When using vanilla CFR for player i, RTi ≤ ∆u,iMi

√
|Ai|/

√
T .

Proof: Define ∆t
u,i(I) = σt−i(I)∆u,i(I). Using Theorem 8,

(RT,+i (I))2 ≤ |A(I)|
T 2

T∑
t=1

(∆t
u,i(I))2 (115)

RT,+i (I) ≤
√
|A(I)|∆u,i(I)

T

√√√√ T∑
t=1

(σt−i(I))2. (116)

By summing over all information sets of I , we get:

RT,+i ≤ 1
T

∑
I∈Ii

√
|A(I)|∆u,i(I)

√√√√ T∑
t=1

(σt−i(I))2 (117)

≤
√
|Ai|∆u,i

T

∑
I∈Ii

√√√√ T∑
t=1

(σt−i(I))2 (118)

≤
√
|Ai|∆u,i

T

∑
B∈Bi

∑
I∈B

√√√√ T∑
t=1

(σt−i(I))2. (119)

For each action sequence B ∈ Bi: ∑
I∈B

σt−i(I) ≤ 1 (120)

T∑
t=1

∑
I∈B

σt−i(I) ≤ T (121)

Therefore, by Lemma 5:

∑
I∈B

T∑
t=1

√
σt−i(I) ≤

√
|B|T (122)

Summing over all B ∈ Bi yields:

RT,+i ≤
√
|Ai|∆u,i

T

∑
B∈Bi

√
|B||T |. (123)

In practice, this makes the bound on vanilla counterfactual regret as tight as the sampling bounds.
The distinctive difference is the amount of computation required per iteration.
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