
Solving Bluff

Marc Lanctot and Jeff Long
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{lanctot|jlong1}@cs.ualberta.ca

Abstract

Bluff is a popular imperfect information dice-game that can
be played with 2 or more players. In this paper, we find an op-
timal game-theoretic solution for a small scale game of Bluff
using the game-solving method of Koller, Megiddo and von
Stengel. We find that the game of 1 die vs. 1 die Bluff is
slightly biased in favor of the second player to move, but the
addition of a common variant balances the game, giving an
advantage to neither player. We also show the optimal strate-
gies required by both players to achieve these optimal values.

Introduction
Bluff is a simple dice-game involving both chance and im-
perfect information. To find theoptimal minimax strategy
to such a game would traditionally involve converting the
game from itsextensive, or game tree, form to itsnormal,
or matrix, form. Once converted to such a form, the game’s
optimal strategies and its game-theoreticvalue can be com-
puted using any linear program solver.

The problem is that a direct conversion from extensive to
normal form results in a matrix that is exponential in the
size of the game tree. This makes it infeasible to solve a
game like Bluff even on the smallest scale. In 1994, Koller,
Megiddo and von Stengel presented a method for solving ex-
tensive form games that is linear in the game tree size rather
than exponential (Koller, Megiddo, & von Stengel 1994).

The goal of this paper is to use the method by Koller,
Megiddo and von Stengel to find game-theoretic solutions
to a small-scale game of Bluff.

This paper is organized as follows. The remainder of this
section presents the rules of Bluff, and details the exact pa-
rameters for which we will solve the game. The next section
outlines the key aspects of the method by Koller, Megiddo
and von Stengel. The following section describes our
methodology in applying the technique of Koller, Megiddo
and von Stengel to Bluff. The fourth section presents the
solution to the game and a discussion of our results, and the
last section concludes the paper.

The Game of Bluff
Bluff (also commonly known as Liar’s Dice and Perudo) is
an imperfect information game forn players. Each player in

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the game hasm dice. In practice, these are always 6-sided
dice, but from a theoretical perspective, these dice could
have any number of sides, which we denote byd.

The game consists of several rounds, depending on both
the number of players and dice involved. At the start of every
round, each player rolls their dice and hides the result under
a cup. Players examine the results of their own roll, but
not the rolls of their competitors. For the remainder of the
round, the players take alternating turns. When it is the turn
of playerX to play,X must do one of two things: make a
bid, or call Bluff. A bid consists of a quantity,q, and a die-
face,f , and by making such a bid, the playerX is saying
that over all the dice rolled by all players, at leastq of them
are showing facef . The highest die-face,d, is considered to
be ‘wild,’ meaning it simultaneously counts as being every
other die face for the purpose of verifying bids.

Unless playerX is starting the round, there will always
be previous bid,bi−1, made by the player whose turn im-
mediately preceded the turn ofX. If X wishes to make a
bid, that bid must be higher thanbi−1. Bids are ordered first
according toq, and then according tof (eg. a bid of 3-1’s is
higher than a bid of 2-5’s). Since a bid wheref = d is less
probable than any other bid of the sameq, bidding inf = d
falls outside this normal progression. In general, a bid(q, f)
wheref = d is considered to be higher than a bid(q2, f2)
wheref2 6= d for all q2 < 2 ∗ q.

If instead of making a bid,X calls Bluff, then the current
round comes to an end. All players reveal their dice, and the
bid bi−1 made by playerY immediately prior toX ’s turn is
verified. If the bid was in fact correct (ie. there are at least
q dice showing either facef or the wild face,d), X loses
the round (which usually means forfeiting a die for the next
round). However, if the bid was not correct (Y was bluffing),
thenY loses the round. When a player loses all their dice,
they lose and are out of the game.

In this paper, our goal is to completely solve, in the
game-theoretic sense, the game of 2-player Bluff where each
player has one 6-sided die (n = 2, m = 1, d = 6).

There are numerous possible variants to Bluff. One vari-
ant that we will examine in this paper is ‘checking.’ Check-
ing means that on playerX ’s turn, in addition to making a
bid or calling Bluff, they make opt to call Check instead. If a
player calls Check, all dice are revealed, just as when Bluff
is called, except that in this case, the checking player winsif



a b

a

b

−10,0−2,−2

0,−10 −5,−5

Player 2

Player 1

Figure 1: The payoff matrix for the Prisoner’s Dilemma

the previous bidbi−1 wasexactly correct (ie. there are pre-
ciselyq dice showing either facef or the wild face,d). In all
other cases, the checking player loses. In our experimental
results, we will show how the addition of the option to check
changes the game.

Background
This section presents the foundation (theory and algorithms)
on which the the method described in the next section is
built. The method used to find equilibrium strategies in Bluff
is largely based on the ones presented by Daphne Koller et.
al.. We suggest referring to (Koller, Megiddo, & von Sten-
gel 1994) for a more elaborate and detailed version of this
background information.

Classic Two-Person Game Theory
A game is said to be represented innormal form if it is repre-
sented by payoff matrices for player 1 and 2. Games that are
represented in normal form are callednormal form games,
or sometimes also calledmatrix games. Hereon, we assume
that a game is never played by more or less than two players.
Them rows of a payoff matrix correspond to the actions that
player 1 can take and then columns of of a payoff matrix
correspond to the actions that player 2 can take. The play-
out of a normal form game is a pair of choices (“strategies”)
made by player 1 and player 2, each made uninformed of
the other’s decision (“simultaneously”). The entries of the
payoff matrices represent a payoff to the player; by conven-
tion, the matrixA is the payoff matrix for player 1 andB is
the payoff matrix for player 2. Players are usually interested
in maximizing this payoff. A common example of a nor-
mal form game is thePrisoner’s Dilemma, depicted below
in Figure 1. Note that the two matrices are typically shown
overlaid: each entryaij , bij represents both the the payoff
for player 1 if she plays strategyi while player 2 plays strat-
egyj and the payoff for player 2 if she plays strategyj while
player 1 plays strategyi.

Zero-sum games are special cases of normal form games
whereB = −A. These games are special in the sense that
for every game played, either player 1’s gain is player 2’s
loss or vice versa. They are also usually represented by a
single payoff matrix (by convention,A). Another common
example isRock, Paper, Scissors shown in Figure 2.

A pure strategy, sometimes also called adeterministic
strategy, is a strategy where the player always takes the same
action. A general ormixed strategy is a probability distribu-
tion over pure strategies. By convention,x is a strategy for
player 1 andy is a strategy for player 2. If these strategies

rock paper scissors

0rock −1 +1

−1

−1 +1 0

0+1

scissors

paper

P2 = y

P1 = x

 payoff matrix = A

Figure 2: The payoff matrix for player 1 for the game of
Rock, Paper, Scissors

are used, it is easy to verify that theexpected payoff to player
1 will be xT Ay. A major result of the Minimax Theo-
rem (von Neumann 1928) is that every two-person, zero-sum
game has at least one pair of strategies that maximize their
respective payoffs. These pairs of strategies are calledequi-
librium strategies. Note that Nash later proved that equilib-
rium strategies exist in all general-sum games (Nash 1950).

The usual way of finding equilibrium strategies in a two-
person games is to formalize the problem as a linear program
and use existing methods to solve such linear programs. The
constraints follow from the definition of two-person zero-
sum games:

∑
xi∈x

xi = 1 because the strategy is a proba-
bility distribution, andx ≥ 0 because the entries represent
probabilities. If player 1 plays with a fixed strategy, then a
best response strategy for player 2 can be found by finding
the solution to the following linear program

maximizey(xT By) subject toFy = f ,y ≥ 0

whereF is a matrix of 1’s andf = 1. An analogous pro-
gram can be derived for player 1 assuming player 2 employs
a fixed strategy. In fact, using strong duality of linear pro-
gramming the duals of these programs can be combined with
the original programs to form 2 linear programs whose solu-
tions correspond to equilibrium strategies for both players.

Games can also be expressed inextensive form, ie. by a
game tree: a set of states and transitions corresponding to in-
dividual actions, where leaves are the ending positions, and
any path from root to leaf in the tree corresponds to a par-
ticular playout. One way to find equilibrium strategies is to
first convert the game to normal form and then to use linear
programming. This method will work, but computational
constraints make it impractical since the size of the matrix
obtained is exponential in the size of the game tree itself. An
example of an extensive form game is shown in Figure 3. Its
normal form is given in Table 11.

Imperfect Information Games
In an imperfect information game, such as Bluff, states
which players cannot differentiate are calledinformation
sets. For example, in Figure 3 there are three information
sets for player 1 and 2 information sets for player 2. An in-
formation set for a player is what that players knows about

1Note that there are errors in the values given in original paper;
these have been corrected in the table shown here.



chance

0.2

5

10 15 20 −5

2

1

l

p q

L R L R

1

0.2

10 20

20 50

d

1530

t

d

5
0.2

0.4

1

r
c c

s t s

2

Figure 3: A zero-sum game in extensive form. (Koller,
Megiddo, & von Stengel 1994)

the current state of the game. For example, in Bluff, a player
always at least knows the values on her own die. We also as-
sumeperfect recall; that is, a player also knows the sequence
of moves that have been taken so far.

The normal form equivalent does not take the structure of
the extensive form’s game tree. In fact, there may be many
combinations of pure strategies which do not make sense to
consider because they will never arise in the game. Follow-
ing the example above, once player 1 chooses actionr, any
pure strategies includings andt are not valid because they
cannot be followed anymore. Therefore, we want to use a
method that captures the restrictions imposed by the struc-
ture of the game tree.

To find equilibrium strategies for an extensive form game
more efficiently, the problem must be considered from a
slightly different perspective. Consider the leaves of the
game tree. The leaves are states which mark the end of
the game and states for which payoffs are associated. De-
noteσ1(L) to be the sequence of moves taken by player 1
in a particular playout which leads to the final leafL. De-
fine a realization weight µ1(σ1(L)) as the sum of proba-
bilities over all pure strategies of the actions that can been
taken in any given state which results in leafL and would
lead a sequence ofσ1(L). Realization weights for player 2
can be defined similarly. Defineβ(L) to the product of all
chance nodes along the path toL. Then, if players are play-
ing with strategiesµ1 andµ2 then the probability that leafL
is reached is

µ1(σ1(L))µ2(σ2(L))

The set of linear programs can be transformed into an
equivalent set simply by computing directly with the se-
quences rather than strategies. Define the empty sequence
∅ to be the sequence containing no moves. Each valid game
sequence can then be thought of as the empty sequence or

(p,s) (p,t) (q,s) (q,t)
(l,L,c) 9 15 9 15
(l,L,d) 13 10 13 10
(l,R,c) 9 15 9 15
(l,R,d) 13 10 13 10
(r,L,c) 10 16 12 18
(r,L,d) 14 11 16 13
(r,R,c) 11 17 7 13
(r,R,d) 15 12 11 8

Table 1: The converted payoff matrix of the example
extensive-form game (Koller, Megiddo, & von Stengel
1994)

a concatenation of a sequence leading to a leaf’s parent and
the final choice made by the player.

Constraints can be placed in the same way as before, ie.
by asserting that the realization weights of all leaves sum
to 1. These constraints can be defined inductively on the
structure of the game tree as follows. Imagine a weightxσ

induced by an interior node whose corresponding sequence
is σ. If the weightxσ is equal to the sum of the weights of
its children then the restriction that the sum at the root must
equal 1 satisfies the required constraints. These constraints
can be easily built by traversing the game tree. Furthermore,
the number of constraints are linear in the game tree size.

The rows and columns of the payoff matrices correspond
to possible sequencesσ1 andσ2. The entries are expected
payoffs: simply the product of the original payoff and
chance of arriving in leaf L given the sequence:β(L) · aij .
Note that this matrix will be sparse because the payoff ma-
trix entries for every pair of strategies that do not lead to a
leaf will be 0. The number of leaves will be linear in the
game tree size, which will reduce the effort required by the
linear programming solver exponentially.

A pair of solutions to this new linear program will be the
optimal weights for each node in the game tree. For each
node, the distribution of the weights of valid sequences for
the children describes is optimal for an equilibrium strategy.
Therefore, a choice at any given node can be obtained by
normalizing the distribution of these weights and choosinga
child node according the this normalized distribution.

Methodology
This sections describes how we apply the general method
described above to Bluff to find equilibrium strategies.

Game Tree Representation
Often, sample game trees for imperfect information games
are similar to the tree depicted in Figure 4. This sort of tree
is characteristic of a game where the player to move does not
know the move made immediately prior by his opponent, but
does know everything else about the game. The game tree
for Bluff is quite different from this. In Bluff, both play-
ers have complete knowledge of all moves made during the
game. The only hidden information consists of the result
of the opponent’s die roll at the start of the round. This re-



a b c d e f g h i j k l m
1-1 1-2 1-3 1-4 1-5 1-6 2-1s 2-2s 2-3s 2-4s 2-5s 2-6s Bluff

Table 2: Bid-to-character encoding for all legal bids in 2-player, 1-die Bluff.

Figure 4: The standard example of the game tree of an im-
perfect information game. Enclosed nodes represent infor-
mation sets. In this structure, the player to move does not
know the immediately preceding move made by the oppo-
nent

X to Move

Y to Move

X to Move

sults in a game tree that resembles Figure 5 (but which is of
course much bigger and deeper).

We can therefore attach an informative label to all infor-
mation sets of a playerX by denoting all the information
available toX at that point in the game. This informa-
tion consists ofX ’s own die roll, and the bidding sequence
made thus far in the game by bothX and the opponent. If
we map each possible bid to single alphabetic characters
in lexicographic order based on the legal bid progressions,
then the label for each information set is a string consist-
ing of the player’s die roll concatenated with the bidding se-
quence. For example, the string X1ab is the information set
for playerX whereX ’s die result is a 1, the first bid (made
by X) was 1-1, and the second bid (made byY ) was 1-2.
We show the encoding of all bids in Table 2, where bids are
ordered according to their legal progression.

If X is the player to move first, then the length of the
bidding sequence will always be odd in any information set
belong toX, and odd when the information set belongs toY .
Once we have constructed information sets in this manner,
we can easily denote legal moves by simply appending the
character corresponding to a legal bid to the end of the string
representing the information set in which that move is made.

The above construction immediately yields a way to count
the exact number of leaves in the game tree, and thus also the
number of non-zero entries in the payoff matrixA. Since
each bid can occur at most once in a legal bidding sequence,
the number of such legal sequences is clearly the number of
subsets of the set1 . . . b − 1, whereb = n ∗ m ∗ f is simply
the number of legal bids (we subtract 1 because the empty
set is not a legal bid sequence). The number of subsets of an
b element set is simply2b. Furthermore, each such bidding
sequence can arise for all combinations of die rolls of both
players, resulting in a final number of leaves in the game tree
of b ∗ (2b − 1). For our case, whereb = 12, this results in
49140 game tree leaves.

Figure 5: The general structure of the game tree for bluff,
in the case where each player has a 2-sided die. Enclosed
nodes joined by arcing lines represent information sets.

0.5 0.5

0.5 0.5 0.5 0.5

X to Move

Y to Move

X’s die

Y’s die

Experimental Analysis

This section describes the empirical setup and results.

The experiments essentially traverse the game tree recur-
sively for Bluff, filling the constraint matrices and then fill-
ing the payoff matrix once a leaf is reached. The values
β(L) = 1

36
for all leaf nodes because there is only one

chance node at the beginning of the game. The tree traversal
algorithm uses dynamic matrix data structures which auto-
matically keep track of name/number associations for both
rows and columns. This allows for convenient building of
the matrices since the naming scheme for information sets
and sequences is clear. The linear programs described in
Eq. 8 and Eq. 9 from (Koller, Megiddo, & von Stengel
1994) are built from these matrices and the GNU Linear Pro-
gramming Kit (GNU 2007) is used to find the solution using
the simplex method. To ensure the correctness of the im-
plementation, the algorithms were verified on normal form
and sequence form versions of Rock, Paper, Scissors and the
example game shown in Figure 3.

The experiments run on Bluff find equilibrium strategies
for both players in sequence form. The variabledf repre-
sents the number of die faces for both dice. The number of
die faces is varied from 2 to 6. The wild value is always
equal to the number of die faces, eg. with 4 die faces 4s
are wild. The variablesch and!ch represent the situations
where the Check move is enabled or disabled. The “value
of the game”V represents the expected payoff for the first
player, ie. the player that starts.

The source code and result files are available from
(Lanctot & Long 2007). The source code is in the file
675proj.tar.gz.



V tfill tx ty ttot

!ch, df=2 0.5 0 0 0 << 1
!ch, df=3 0.11111 < 1 < 1 < 1 ≈ 2
!ch, df=4 0.0625 2 1.5 1.5 5
!ch, df=5 0.008 75 37 48 160
!ch, df=6 −0.027132 1941 977 856 3774
ch, df=2 0 0 0 0 << 1
ch, df=3 0 < 1 < 1 < 1 ≈ 2
ch, df=4 0 8 3 2 13
ch, df=5 0 186 57 27 270
ch, df=6 0 5187 1182 1033 7402

Table 3: Values and timing results for different cases of
Bluff.

Results
The values of the games and timing information are listed
in Table 3. tfill represents the amount of time taken to fill
the matrices.tx andty represent the amount of time taken
to find equilibrium strategies forx and y. ttot represents
the total time taken by the case. All times are in seconds.
The experiments were run on a 64-bit dual-processor Intel
Pentium 4 CPU @ 3.40 GHz.

Results are in files named likexstrat.df4.check;
this file holds the first players’ (playerX ’s) sequence
weights with the number of die faces equals to 4 and the
check move enabled.

An example of the sequence-weight strategies (shown
compactly, ie. only sequences of nonzero weight) computed
for the case where check is disabled and the number of die
faces is 2 (!ch,df=2) is:

x is y is
Xemptymove=1.000000 Yemptymove=1.000000
X1c=1.000000 Y1ad=1.000000
X1cde=1.000000 Y1bd=1.000000
X2d=1.000000 Y1cd=1.000000

Y1de=1.000000
Y2ad=1.000000
Y2bd=1.000000
Y2cd=1.000000
Y2de=1.000000

In this case there are only 4 possible bids, soe means
calling Bluff. We see that for this case player 1 will always
playc (bid 2-1s) when she has a 1 and will playd (bid 2-2s)
whenever she has a 2. The sequenceX1cde represents the
information set where player 1 rolled a 1, bid 2-1s, player 2
bid 2-2s, and player 1 called Bluff. Likewise, the sequence
Y1ad represents the information set where player 2 rolled a
1, player 1 bid 1-1, and player 2 bid 2-2s. The action corre-
sponding to the Check move is always the next in sequence
after Bluff. In this case, it would bef.

With higher die faces (d) the action encodings for Bluff
and Check change. Ford = {3, 4, 5} the actions for
Bluff/Check areg/h, i/j, andk/l. For thed = 6 case,
the bid encoding is shown in Table 2.

Note that because of the constraints imposed on the
weights, there are sometimes non-zero values for weights

that would never arise if both players were playing equi-
librium strategies. In the above example,Y1ad andY1bd
would never occur because player 1 would never playa or
b first, but it is still must be part of the strategy for the con-
straints to hold.

The sequence-weight strategies for thech,df=2 case are
shown below.

x is y is
Xemptymove=1.000000 Yemptymove=1.000000
X1b=1.000000 Y1ab=1.000000
X1bcd=0.500000 Y1abce=1.000000
X1bcf=0.500000 Y1abde=1.000000
X1bde=1.000000 Y1bf=1.000000
X2b=1.000000 Y1cd=0.500000
X2bcd=0.500000 Y1cf=0.500000
X2bcf=0.500000 Y1de=1.000000
X2bde=1.000000 Y2ab=1.000000

Y2abcf=1.000000
Y2abde=1.000000
Y2bf=1.000000
Y2cd=0.500000
Y2cf=0.500000
Y2de=1.000000

In this case, player 1 always bids 1-2 no matter what
her die roll is and player 2 always calls Check in response.
The rest of the values are irrelevant because they are never
played.

A partial view of the sequence-weight strategies for the
!ch,df=6 case is shown below.

x is
X1c=0.418605 X3d=0.232558
X1d=0.372093 X3e=0.069767
X1e=0.209302 X4d=0.930233
X2c=0.418605 X4e=0.069767
X2d=0.372093 X5e=1.000000
X2e=0.209302 X6c=0.279070
X3c=0.697674 X6d=0.372093

X6e=0.348837

y is
Y1cd=0.087209 Y3de=0.511628
Y1ce=0.387597 Y3dm=0.488372
Y1cm=0.525194 Y3ef=0.093023
Y1de=0.288760 Y3em=0.906977
Y1dm=0.711240 Y4cd=1.000000
Y1eg=0.129845 Y4de=0.162791
Y1em=0.870155 Y4dj=0.837209
Y2cd=0.174419 Y4ef=0.906977
Y2ce=0.304264 Y4em=0.093023
Y2de=0.292636 Y5ce=1.000000
Y2dm=0.707364 Y5de=1.000000
Y2eh=0.125969 Y5ek=1.000000
Y2em=0.874031 Y6cd=0.261628
Y3cd=0.087209 Y6ce=0.691860
Y3ce=0.261628 Y6ci=0.046512
Y3ci=0.651163 Y6de=1.000000

Y6ef=1.000000



In the above strategies, both sequences with nonzero
weight and irrelevant entries have been removed. Sequences
that have more than 2 bids have been removed as well.

We see that player 1 never starts with a bid other than 1-
3, 1-4, or 1-5 even when she rolled a 6. The strategies are
quite mixed: player 1 only chooses deterministically when
she has rolled a 5. The strategies are slightly biased towards
the bid of 1-5; it seems generally that calling a bid of 1-5 is
desired.

Discussion

Our results demonstrate that 1 die against 1 die Bluff, with
6-sided dice, is very slightly biased in favor of the player
who plays second. However, we also see that as we play
with dice with fewer faces (smallerd), the advantage shifts
towards the first player to move. The reason for this is best
illustrated by the case of playing with 2-sided dice (d = 2),
where the value of the game is a whopping 0.5 for player
1. In this scenario, the first player,X, can always safely
make a bid of 2-1s, because 2s are wild. PlayerY cannot
call Bluff, and therefore must make a bid of 2-2s. However,
the chance of rolling 2-2s is only 25%, which meansX is
expected to win 75% of all games, resulting in the payoff
listed in our results. We also note that the solution found in
our results, whereX always calls 2-1s when his roll is a 1
and 2-2s when his roll is a 2 is equally valid, since whenX
has a 2, it doesn’t matter whether he calls 2-2s and letsY
call Bluff, or whether he forcesY to call 2-2s and then calls
Bluff himself.

As we increase the value ofd, X is faced with the fact
that any bid he makes is less probable to occur, unless he
simply calls the result of his own die. This can be a disas-
trous decision, however, ifX rolls low, becauseY can then
simply call his own die, andX is forced to make a highly
improbable bid. Since probabilistically, all bids from 1-1to
1-(d− 1) are equally likely, a bid of 1-(d− 1) is generally a
very strong bid, because it forces the other player to make a
much less probable bid.

We can see this directly in our results ford = 6, where
playerX is biased towards calling 1-5, regardless of the re-
sult of his own die roll (and in fact, he always does so when-
ever he actually rolls a 5). In response,Y will usually call
Bluff except when he has a 5 or a 6 himself, rather than be
forced to make a highly improbable bid.

When Checking is added to the game, we see dramatic
differences in both the value of the game and its optimal
strategies. In the case whered = 2, Checking takes away
X ’s ability to force Y to make the improbable bid of 2-
2s, because calling 2-1s is now a losing proposition for any
player that calls it.X thus loses his first player advantage
and the value of the game becomes zero.

For the full value ofd = 6, the value of the game re-
mains zero, but the strategies are very different from the ba-
sic game. Instead of being biased towards calling 1-5 forX,
so as to forceY to either call bluff or make a higher bid,
Y simply never makes the improbable high bid and always
calls Bluff or Check based on the roll of his die.X must
then use strategies such that half the time, a call of Check

will result in a win forX, and the other half, a call of Bluff
will result in a win forX.

One possible reason why Checking has this effect on the
game is that it ensures that the player to move always has
a winning play. Without Checking, if a playerX can suc-
cessfully call the highest bid that is not a bluff given the
dice results of both players, thenX has effectively won the
game, even thoughY still has to make some move before
the game is over. However, with Checking as an option, ifY
believes thatX has found the highest ‘true’ bid, thenY can
call Check to win the game. This makes it of paramount im-
portance to both players to not give away the result of their
die rolls. SinceY cannot afford to give away information
about his die, it is best to simply call bluff or check imme-
diately. There is no need forY to randomize over strategies,
since the result of his die roll acts as a randomizer for him.

Conclusion
In this paper, we present an optimal, game-theoretic solution
to the game of 2-player Bluff with 1 6-sided die per player.
We found that the basic game slightly favored the second
player to move, with a value of -0.027132, but that adding
the Checking variant to the game resulted in a value of 0,
favoring neither player.

As the size of the Bluff game tree is exponential in the
number of dice, solving the game at any larger scale quickly
becomes a daunting task. Furthermore, if the game is played
such that a player who loses a round not only loses a die, but
gives it to the other player, then solving the game seems to
become a non-linear problem, since we end up with a recur-
sive situation where the value of the 2 dice vs. 1 die game
depends on the value of the 1 die vs. 2 dice game. We are
aware of no known method for resolving this non-linearity,
making this problem a potentially interesting direction for
future research.

Acknowledgments
We thank Michael Buro for his assistance and inspiration
with this project. Financial support was provided in part by
NSERC and iCORE.

References
GNU. 2007. Linear programming kit.http://www.
gnu.org/software/glpk/.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994.
Fast algorithms for finding randomized strategies in game
trees. 750–759.http://citeseer.ist.psu.edu/
koller94fast.html.
Lanctot, M., and Long, J. 2007.http://www.cs.
ualberta.ca/∼lanctot/files/675proj/.
Nash, J. 1950. Non-cooperative games.
von Neumann, J. 1928. Theory of parlor games.


