Solving Bluff

Marc Lanctot and Jeff Long
Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{lanctotjlong1l} @cs.ualberta.ca

Abstract

Bluff is a popular imperfect information dice-game that can
be played with 2 or more players. In this paper, we find an op-
timal game-theoretic solution for a small scale game of Bluff
using the game-solving method of Koller, Megiddo and von
Stengel. We find that the game of 1 die vs. 1 die Bluff is
slightly biased in favor of the second player to move, but the
addition of a common variant balances the game, giving an
advantage to neither player. We also show the optimal strate-
gies required by both players to achieve these optimal values.

I ntroduction

Bluff is a simple dice-game involving both chance and im-
perfect information. To find theptimal minimax strategy
to such a game would traditionally involve converting the
game from itsextensive, or game tree, form to iteormal,
or matrix, form. Once converted to such a form, the game’s
optimal strategies and its game-theorettue can be com-
puted using any linear program solver.

The problem is that a direct conversion from extensive to
normal form results in a matrix that is exponential in the

the game has: dice. In practice, these are always 6-sided
dice, but from a theoretical perspective, these dice could
have any number of sides, which we denotelby

The game consists of several rounds, depending on both
the number of players and dice involved. At the start of every
round, each player rolls their dice and hides the resultunde
a cup. Players examine the results of their own roll, but
not the rolls of their competitors. For the remainder of the
round, the players take alternating turns. When it is the turn
of player X to play, X must do one of two things: make a
bid, or call Bluff. A bid consists of a quantity, and a die-
face, f, and by making such a bid, the play&ris saying
that over all the dice rolled by all players, at leasif them
are showing facg¢. The highest die-facel, is considered to
be ‘wild,” meaning it simultaneously counts as being every
other die face for the purpose of verifying bids.

Unless playetX is starting the round, there will always
be previous bidp;_,, made by the player whose turn im-
mediately preceded the turn &f. If X wishes to make a
bid, that bid must be higher than_;. Bids are ordered first
according tag, and then according tf (eg. a bid of 3-1's is

size of the game tree. This makes it infeasible to solve a higher than a bid of 2-5's). Since a bid whefe= d is less

game like Bluff even on the smallest scale. In 1994, Koller,

probable than any other bid of the saméidding inf = d

Megiddo and von Stengel presented a method for solving ex- falls outside this normal progression. In general, a(igf)
tensive form games that is linear in the game tree size rather where f = d is considered to be higher than a lfig, f2)

than exponential (Koller, Megiddo, & von Stengel 1994).

The goal of this paper is to use the method by Koller,
Megiddo and von Stengel to find game-theoretic solutions
to a small-scale game of Bluff.

This paper is organized as follows. The remainder of this
section presents the rules of Bluff, and details the exact pa
rameters for which we will solve the game. The next section
outlines the key aspects of the method by Koller, Megiddo
and von Stengel. The following section describes our
methodology in applying the technique of Koller, Megiddo
and von Stengel to Bluff. The fourth section presents the

wheref, #£ dforall ¢ < 2 xq.

If instead of making a bidX calls Bluff, then the current
round comes to an end. All players reveal their dice, and the
bid b;_; made by playel” immediately prior taX's turn is
verified. If the bid was in fact correct (ie. there are at least
q dice showing either fac¢ or the wild face,d), X loses
the round (which usually means forfeiting a die for the next
round). However, if the bid was not correéf gvas bluffing),
thenY loses the round. When a player loses all their dice,
they lose and are out of the game.

In this paper, our goal is to completely solve, in the

last section concludes the paper.

The Game of Bluff
Bluff (also commonly known as Liar’s Dice and Perudo) is
an imperfect information game farplayers. Each player in

Copyright © 2007, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

player has one 6-sided die & 2, m = 1, d = 6).

There are numerous possible variants to Bluff. One vari-
ant that we will examine in this paper is ‘checking.” Check-
ing means that on playeX’s turn, in addition to making a
bid or calling Bluff, they make opt to call Check instead. If a
player calls Check, all dice are revealed, just as when Bluff
is called, except that in this case, the checking player ifins

Player 2

a b
al -2-2| -100
Player 1
b| 0-10 | -5-5

Figure 1: The payoff matrix for the Prisoner’s Dilemma

the previous bid;_; wasexactly correct (ie. there are pre-
ciselyq dice showing either facg or the wild face). In all
other cases, the checking player loses. In our experimental
results, we will show how the addition of the option to check
changes the game.

Background

This section presents the foundation (theory and algogjhm
on which the the method described in the next section is
built. The method used to find equilibrium strategies in Bluf

is largely based on the ones presented by Daphne Koller et.
al.. We suggest referring to (Koller, Megiddo, & von Sten-
gel 1994) for a more elaborate and detailed version of this
background information.

Classic Two-Person Game Theory

A game is said to be representediormal formif it is repre-
sented by payoff matrices for player 1 and 2. Games that are
represented in normal form are calleormal form games,

or sometimes also calledatrix games. Hereon, we assume
that a game is never played by more or less than two players.
Them rows of a payoff matrix correspond to the actions that
player 1 can take and the columns of of a payoff matrix

P2=y
rock paper scissor:
rock| O -1 +1
Pl =x paper| +1 0 -1
scissors| -1 +1 0

payoff matrix = A

Figure 2: The payoff matrix for player 1 for the game of
Rock, Paper, Scissors

are used, itis easy to verify that tgected payoff to player
1 will be x"Ay. A major result of the Minimax Theo-
rem (von Neumann 1928) is that every two-person, zero-sum
game has at least one pair of strategies that maximize their
respective payoffs. These pairs of strategies are cedjeid
librium strategies. Note that Nash later proved that equilib-
rium strategies exist in all general-sum games (Nash 1950).
The usual way of finding equilibrium strategies in a two-
person games is to formalize the problem as a linear program
and use existing methods to solve such linear programs. The
constraints follow from the definition of two-person zero-
sum gameszwEx x; = 1 because the strategy is a proba-
bility distribution, andx > 0 because the entries represent
probabilities. If player 1 plays with a fixed strategy, then a
best response strategy for player 2 can be found by finding
the solution to the following linear program

maximize, (x” By) subjecttoFy = f,y > 0

whereF is a matrix of 1's andf = 1. An analogous pro-
gram can be derived for player 1 assuming player 2 employs

correspond to the actions that player 2 can take. The play- 3 fixed strategy. In fact, using strong duality of linear pro-
out of a normal form game is a pair of choices (“strategies”) gramming the duals of these programs can be combined with
made by player 1 and player 2, each made uninformed of the original programs to form 2 linear programs whose solu-

the other’s decision (“simultaneously”). The entries o th
payoff matrices represent a payoff to the player; by conven-
tion, the matrixA is the payoff matrix for player 1 anB is
the payoff matrix for player 2. Players are usually intezdst
in maximizing this payoff. A common example of a nor-
mal form game is thé&risoner’s Dilemma, depicted below
in Figure 1. Note that the two matrices are typically shown
overlaid: each entry,;;, b;; represents both the the payoff
for player 1 if she plays strategywhile player 2 plays strat-
egy; and the payoff for player 2 if she plays strategyhile
player 1 plays strategy

Zero-sum games are special cases of normal form games
whereB = —A. These games are special in the sense that
for every game played, either player 1's gain is player 2's

loss or vice versa. They are also usually represented by a

single payoff matrix (by conventiomd). Another common
example isRock, Paper, Scissors shown in Figure 2.

A pure strategy, sometimes also called deterministic
strategy, is a strategy where the player always takes the same
action. A general omixed strategy is a probability distribu-
tion over pure strategies. By conventionijs a strategy for
player 1 andy is a strategy for player 2. If these strategies

tions correspond to equilibrium strategies for both player

Games can also be expresseabitensive form, ie. by a
gametree: a set of states and transitions corresponding to in-
dividual actions, where leaves are the ending positiond, an
any path from root to leaf in the tree corresponds to a par-
ticular playout. One way to find equilibrium strategies is to
first convert the game to normal form and then to use linear
programming. This method will work, but computational
constraints make it impractical since the size of the matrix
obtained is exponential in the size of the game tree itseif. A
example of an extensive form game is shown in Figure 3. Its
normal form is given in Table 1

Imperfect nformation Games

In an imperfect information game, such as Bluff, states
which players cannot differentiate are calladormation

sets. For example, in Figure 3 there are three information
sets for player 1 and 2 information sets for player 2. An in-
formation set for a player is what that players knows about

!Note that there are errors in the values given in original paper;
these have been corrected in the table shown here.

chance (p,s) (pt) (a,8) (a)

Lol 9 15 9 15
(IL,d) 13 10 13 10
(LRec)| 9 15 9 15
(Rd)| 13 10 13 10
Lo | 10 16 12 18
rLd) | 14 11 16 13
RO | 11 17 7 13
(Rd| 15 12 11 8

Table 1. The converted payoff matrix of the example
i extensive-form game (Koller, Megiddo, & von Stengel
1994)

A * R =
L \R L/ R a concatenation of a sequence leading to a leaf’s parent and
10 15 20 -5

the final choice made by the player.

Constraints can be placed in the same way as before, ie.
by asserting that the realization weights of all leaves sum
to 1. These constraints can be defined inductively on the

Figure 3: A zero-sum game in extensive form. (Koller, structure of the game tree as follows. Imagine a weight
Megiddo, & von Stengel 1994) induced by an interior node whose corresponding sequence
is o. If the weightz, is equal to the sum of the weights of
its children then the restriction that the sum at the roottmus
the current state of the game. For example, in Bluff, a player equal 1 satisfies the required constraints. These coristrain
always at least knows the values on her own die. We also as- can be easily built by traversing the game tree. Furthermore
sumeperfect recall; that s, a player also knows the sequence the number of constraints are linear in the game tree size.
of moves that have been taken so far. The rows and columns of the payoff matrices correspond
The normal form equivalent does not take the structure of to possible sequences ando?2. The entries are expected
the extensive form’s game tree. In fact, there may be many payoffs: simply the product of the original payoff and
combinations of pure strategies which do not make sense to chance of arriving in leaf L given the sequeng®’) - a;;.
consider because they will never arise in the game. Follow- Note that this matrix will be sparse because the payoff ma-
ing the example above, once player 1 chooses actiamy trix entries for every pair of strategies that do not lead to a
pure strategies includingandt are not valid because they |eaf will be 0. The number of leaves will be linear in the
cannot be followed anymore. Therefore, we want to use a game tree size, which will reduce the effort required by the
method that captures the restrictions imposed by the struc- |inear programming solver exponentially.
ture of the game tree. _ _ A pair of solutions to this new linear program will be the
To find equilibrium strategies for an extensive form game gptimal weights for each node in the game tree. For each
more efficiently, the problem must be considered from a node, the distribution of the weights of valid sequences for
slightly different perspective. Consider the leaves of the the children describes is optimal for an equilibrium sigte
game tree. The leaves are states which mark the end of Therefore, a choice at any given node can be obtained by
the game and states for which payoffs are associated. De-normalizing the distribution of these weights and choosing

notec' (L) to be the sequence of moves taken by player 1 child node according the this normalized distribution.
in a particular playout which leads to the final Idaf De-

fine arealization weight ' (c'(L)) as the sum of proba- M ethodology
bilities over all pure strategies of the actions that cambee] i .
taken in any given state which results in ldafnd would This sections describes how we apply the general method

lead a seguence of! (L) Realization We|ghts for p|ayer 2 described above to Bluff to find equilibrium Strategies.
can be defined similarly. Defing(L) to the product of all i
chance nodes along the pathitoThen, if players are play- ~ Game Tree Representation

ing with strategiessﬂ andy? then the probability that leaf Often, sample game trees for imperfect information games
is reached is are similar to the tree depicted in Figure 4. This sort of tree
is characteristic of a game where the player to move does not
uh (0! (L) (o> (L)) J e

know the move made immediately prior by his opponent, but
The set of linear programs can be transformed into an does know everything else about the game. The game tree
equivalent set simply by computing directly with the se- for Bluff is quite different from this. In Bluff, both play-
guences rather than strategies. Define the empty sequenceers have complete knowledge of all moves made during the
() to be the sequence containing no moves. Each valid game game. The only hidden information consists of the result
sequence can then be thought of as the empty sequence oiof the opponent’s die roll at the start of the round. This re-

a b c d e f g h [i k I m
1- 1] 121314 15|16 2-1s| 2-2s| 2-3s| 2-4s| 2-5s | 2-6s | Bluff

Table 2: Bid-to-character encoding for all legal bids inl2yer, 1-die Bluff.

Figure 4: The standard example of the game tree of an im- Figure 5: The general structure of the game tree for bluff,
perfect information game. Enclosed nodes represent infor- in the case where each player has a 2-sided die. Enclosed
mation sets. In this structure, the player to move does not nodes joined by arcing lines represent information sets.
know the immediately preceding move made by the oppo- Xsde
nent

X 'to Move

Y's die

Y to Move

wee (@ Q@ @

Y to Move

sults in a game tree that resembles Figure 5 (but which is of
course much bigger and deeper).

We can therefore attach an informative label to all infor-
mation sets of a playeK by denoting all the information
available toX at that point in the game. This informa-
tion consists ofX’'s own die roll, and the bidding sequence
made thus far in the game by ba¥ and the opponent. If This section describes the empirical setup and results.

we map each possible bid to single alphabetic characters The experiments essentially traverse the game tree recur-
in lexicographic order based on the legal bid progressions, sively for Bluff, filling the constraint matrices and theri-fil

then the label for each information set is a string consist- jng the payoff matrix once a leaf is reached. The values
ing of the player’s die roll concatenated with the bidding se B(L) = 4 for all leaf nodes because there is only one

quence. For example, the string X1ab is the information set chance node at the beginning of the game. The tree traversal
for player X' whereXs die resultis a 1, the first bid (made igorithm uses dynamic matrix data structures which auto-

Experimental Analysis

by X) was 1-1, and the second bid (made ¥y was 1-2. matically keep track of name/number associations for both
We show the encoding of all bids in Table 2, where bids are ows and columns. This allows for convenient building of
ordered according to their legal progression. the matrices since the naming scheme for information sets

1If X is the player to move first, then the length of the and sequences is clear. The linear programs described in
bidding sequence will always be odd in any information set gq. g and Eq. 9 from (Koller, Megiddo, & von Stengel
belong toX, and odd when the information set belong§'to 1994) are built from these matrices and the GNU Linear Pro-
Once we have constructed information sets in this manner, gramming Kit (GNU 2007) is used to find the solution using
we can easily denote legal moves by simply appending the the simplex method. To ensure the correctness of the im-
character corresponding to a legal bid to the end of thegstrin - plementation, the algorithms were verified on normal form
representing the information set in which that move is made. zpq sequence form versions of Rock, Paper, Scissors and the

o) i example game shown in Figure 3.

The above construction immediately yields a way to count , , _ .
the exact number of leaves in the game tree, and thus also the, ' "€ experiments run on Bluff find equilibrium strategies
number of non-zero entries in the payoff matex Since for both players in sequence form. The_varladfe repre-
each bid can occur at most once in a legal bidding sequence, SENtS the number of die faces for both dice. The number of
the number of such legal sequences is clearly the number of di€ faces is varied from 2 to 6. The wild value is always
subsets of the sdt. .. b — 1, whereb = n + m f is simply equal_to the number of die faces, eg. with 4 dl_e fapes 4s
the number of legal bids (we subtract 1 because the empty &€ wild. The varlablesh.and! ch represent the S|tuat|9ns
setis not a legal bid sequence). The number of subsets of anWhere the Check move is enabled or disabled. The “value
b element set is simplg®. Furthermore, each such bidding of the game’V’ represents the expected payoff for the first
sequence can arise for all combinations of die rolls of both Player, ie. the player that starts.
players, resulting in a final number of leaves inthe game tree The source code and result files are available from
of b* (2° — 1). For our case, wherie = 12, this results in (Lanctot & Long 2007). The source code is in the file
49140 game tree leaves. 675proj.tar. gz.

V il ty ty Liot that would never arise if both players were playing equi-
I'ch,df =2 0.5 0 0 0 <<1 librium strategies. In the above examp¥,ad andY1bd
I'ch,df =3 0.11111 <1l | <1 | «1 ~2 would never occur because player 1 would never play
Ich,df =4 0.0625 2 1.5 1.5 5 b first, but it is still must be part of the strategy for the con-
Ich,df =5 0.008 75 37 48 160 straints to hold.
Ich,df =6 | —0.027132 || 1941 | 977 | 856 | 3774 The sequence-weight strategies fordine df =2 case are
ch,df =2 0 0 0 0 <<1 shown below.
ch,df =3 0 <1l | <1 | <1 ~ 2) i
ch,df =4 0 8 3 2 13 X is y1s
ch, df =5 0 186 57 27 270 Xenpt ynove=1. 000000 Yenpt ynove=1. 000000
ch, df =6 0 5187 | 1182 | 1033 | 7402 X1b=1. 000000 Ylab=1. 000000
X1bcd=0. 500000 Ylabce=1. 000000
] - _ X1bcf =0. 500000 Ylabde=1. 000000
Table 3: Values and timing results for different cases of X1bde=1. 000000 Y1bf =1. 000000
Bluff. X2b=1. 000000 Y1cd=0. 500000
X2bcd=0. 500000 Ylcf =0. 500000
Results X2bcf =0. 500000 Ylde=1. 000000
Lo . . X2bde=1. 000000 Y2ab=1. 000000
The values of the games and timing information are listed vy2abef =1. 000000
in Table 3. t¢¢;; represents the amount of time taken to fill Y2abde=1. 000000
the matrices.t, andt, represent the amount of time taken Y2bf =1 060000
to find equilibrium strategies for andy. t,, represents Y20d=0. 500000
the total time taken by the case. All times are in seconds. v2cf =O. 500000
The experiments were run on a 64-bit dual-processor Intel Y2de:1. 000000
Pentium 4 CPU @ 3.40 GHz. ’
Results are in files named likest r at . df 4. check; In this case, player 1 always bids 1-2 no matter what

this file holds the first players’ (playeX's) sequence her die roll is and player 2 always calls Check in response.
weights with the number of die faces equals to 4 and the The rest of the values are irrelevant because they are never
check move enabled. played.

An example of the sequence-weight strategies (shown A partial view of the sequence-weight strategies for the
compactly, ie. only sequences of nonzero weight) computed | ch, df =6 case is shown below.
for the case where check is disabled and the number of die

faces is 2(ch, df =2) is: X is
X is yis X1c=0. 418605 X3d=0.232558
Xenpt ynove=1. 000000 Yenpt ynove=1. 000000 ﬁgzg %gggg ﬁgzg ggg;g;
X1c=1. 000000 Ylad=1. 000000 —n -

- _ X2c=0.418605 X4e=0.069767
Xlcde=1. 000000 Y1lbd=1. 000000 X2d=0. 372093 X5e=1. 000000
X2d=1. 000000 Ylcd=1. 000000 ' '

X2e=0. 209302 X6¢=0.279070
X3c=0. 697674 X6d=0.372093
X6e=0. 348837

Ylde=1. 000000
Y2ad=1. 000000
Y2bd=1. 000000
Y2cd=1. 000000

- y1s

Y2de=1. 000000 Ylcd=0. 087209 Y3de=0.511628

In this case there are only 4 possible bids,esmeans Ylce=0. 387597 Y3dnr0. 488372
calling Bluff. We see that for this case player 1 will always Y1lcm=0. 525194 Y3ef =0. 093023
playc (bid 2-1s) when she has a 1 and will playbid 2-2s) Y1lde=0. 288760 Y3emnm=0. 906977
whenever she has a 2. The sequeXitede represents the Y1dm=0. 711240 Y4cd=1. 000000
information set where player 1 rolled a 1, bid 2-1s, player 2 Yleg=0. 129845 Y4de=0.162791
bid 2-2s, and player 1 called Bluff. Likewise, the sequence Ylem=0. 870155 Y4dj =0. 837209
Ylad represents the information set where player 2 rolled a Y2cd=0. 174419 Y4ef =0. 906977
1, player 1 bid 1-1, and player 2 bid 2-2s. The action corre- Y2ce=0. 304264 Y4eme0. 093023
sponding to the Check move is always the next in sequence Y2de=0. 292636 Y5ce=1. 000000
after Bluff. In this case, it would bg. Y2dme0. 707364 Y5de=1. 000000
With higher die facesd) the action encodings for Bluff Y2eh=0. 125969 Y5ek=1. 000000
and Check change. Fat = {3,4,5} the actions for Y2em=0. 874031 Y6cd=0. 261628
Bluff/Check areg/h, i /j , andk/l . For thed = 6 case, Y3cd=0. 087209 Y6ce=0.691860
the bid encoding is shown in Table 2. Y3ce=0. 261628 Y6¢i =0. 046512
Note that because of the constraints imposed on the Y3ci =0. 651163 Y6de=1. 000000

weights, there are sometimes non-zero values for weights Y6ef =1. 000000

In the above strategies, both sequences with nonzero will result in a win for X, and the other half, a call of Bluff
weight and irrelevant entries have been removed. Sequenceswill result in a win for X.

that have more than 2 bids have been removed as well.
We see that player 1 never starts with a bid other than 1-

One possible reason why Checking has this effect on the
game is that it ensures that the player to move always has

3, 1-4, or 1-5 even when she rolled a 6. The strategies are a winning play. Without Checking, if a playeY can suc-

quite mixed: player 1 only chooses deterministically when
she has rolled a 5. The strategies are slightly biased t@wvard
the bid of 1-5; it seems generally that calling a bid of 1-5 is
desired.

Discussion

Our results demonstrate that 1 die against 1 die Bluff, with
6-sided dice, is very slightly biased in favor of the player

cessfully call the highest bid that is not a bluff given the
dice results of both players, thet has effectively won the
game, even though’” still has to make some move before
the game is over. However, with Checking as an optioH, if
believes thafX has found the highest ‘true’ bid, théncan

call Check to win the game. This makes it of paramount im-
portance to both players to not give away the result of their
die rolls. SinceY cannot afford to give away information
about his die, it is best to simply call bluff or check imme-

who plays second. However, we also see that as we play diately. There is no need féf to randomize over strategies,

with dice with fewer faces (smallef), the advantage shifts
towards the first player to move. The reason for this is best
illustrated by the case of playing with 2-sided dide=£ 2),
where the value of the game is a whopping 0.5 for player
1. In this scenario, the first playek, can always safely
make a bid of 2-1s, because 2s are wild. Playetannot
call Bluff, and therefore must make a bid of 2-2s. However,
the chance of rolling 2-2s is only 25%, which meaXiss
expected to win 75% of all games, resulting in the payoff
listed in our results. We also note that the solution found in
our results, whereX always calls 2-1s when his roll is a 1
and 2-2s when his roll is a 2 is equally valid, since whén
has a 2, it doesn’t matter whether he calls 2-2s andYets
call Bluff, or whether he force¥ to call 2-2s and then calls
Bluff himself.

As we increase the value df X is faced with the fact

that any bid he makes is less probable to occur, unless he

simply calls the result of his own die. This can be a disas-
trous decision, however, X rolls low, becaus@” can then
simply call his own die, and is forced to make a highly
improbable bid. Since probabilistically, all bids from Itel
1-(d — 1) are equally likely, a bid of X — 1) is generally a

very strong bid, because it forces the other player to make a

much less probable bid.

We can see this directly in our results i@r= 6, where
player X is biased towards calling 1-5, regardless of the re-
sult of his own die roll (and in fact, he always does so when-
ever he actually rolls a 5). In respongé will usually call
Bluff except when he has a 5 or a 6 himself, rather than be
forced to make a highly improbable bid.

When Checking is added to the game, we see dramatic
differences in both the value of the game and its optimal
strategies. In the case wheafe= 2, Checking takes away
X's ability to force Y to make the improbable bid of 2-
2s, because calling 2-1s is now a losing proposition for any
player that calls it. X thus loses his first player advantage
and the value of the game becomes zero.

For the full value ofd = 6, the value of the game re-
mains zero, but the strategies are very different from the ba
sic game. Instead of being biased towards calling 1-5for
so as to forceY” to either call bluff or make a higher bid,

Y simply never makes the improbable high bid and always
calls Bluff or Check based on the roll of his di&X must
then use strategies such that half the time, a call of Check

since the result of his die roll acts as a randomizer for him.

Conclusion

In this paper, we present an optimal, game-theoretic swiuti
to the game of 2-player Bluff with 1 6-sided die per player.
We found that the basic game slightly favored the second
player to move, with a value of -0.027132, but that adding
the Checking variant to the game resulted in a value of 0,
favoring neither player.

As the size of the Bluff game tree is exponential in the
number of dice, solving the game at any larger scale quickly
becomes a daunting task. Furthermore, if the game is played
such that a player who loses a round not only loses a die, but
gives it to the other player, then solving the game seems to
become a non-linear problem, since we end up with a recur-
sive situation where the value of the 2 dice vs. 1 die game
depends on the value of the 1 die vs. 2 dice game. We are
aware of no known method for resolving this non-linearity,
making this problem a potentially interesting directiom fo
future research.

Acknowledgments

We thank Michael Buro for his assistance and inspiration
with this project. Financial support was provided in part by
NSERC and iCORE.

References
GNU. 2007. Linear programming kitht t p: / / www.
gnu. or g/ sof t war e/ gl pk/ .

Koller, D.; Megiddo, N.; and von Stengel, B. 1994.
Fast algorithms for finding randomized strategies in game
trees. 750-75%ttp://citeseer.ist. psu. edu/

kol | er94fast. htm .

Lanctot, M., and Long, J. 2007http://ww. CS.
ual berta.cal/ ~l anctot/fil es/675proj/.

Nash, J. 1950. Non-cooperative games.
von Neumann, J. 1928. Theory of parlor games.

