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Outline

e Part1[30 min: Game-Theoretic Approaches to Multiagent RL in Partially
Observable Environments

e Part 2 [20 min]: Beyond Zero-Sum Games and Beyond Domain-Specific
Evaluation
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Outline

e Part1[30 minlN&gme-Theoretic Approaches to Multiggertt RL in Partially
Observable Environmer

e Part 2 [20 min]: Beyond Zefo-Sum Games amskBeyond Domain-Specific
Evaluation

e Part1: 45 min
e Part2: 10 min
e Questions: 5 min
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Game-Theoretic
Approaches to
MARL in Partially

Observable Games
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Normal Form Games: Algorithms

e Inspired by two-player zero-sum games

Two main “streams”

1. Fictitious play / best response stream

2. No-regret stream

o
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Normal Form Games: Algorithms

e Fictitious Play:
e Start with an arbitrary policy per

' player (' ,m% ),

R',R?

o

6 DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e Fictitious Play:

Ve

Ve

‘b DeepMind

1 1 1
BR', BR', BR,

0 1
2
m 0
BR2. | L«
BR2 R'.R?
BR2

Start with an arbitrary policy per

player (' ,m% ),

o Then, play best response
against a uniform distribution
over the past policies of the

opponent ( BR™ ).
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Normal Form Games: Algorithms

e Fictitious Play:

| 2 | e Start with an arbitrary policy per
m'. BR'. BR' BR, player (m',m? ),
" ”20 A | o Then, play best response
. BR? against a uniform distribution
1
3
BR; D1 R2 over the past policies of the
1 ! .
/s 2 opponent ( BR™ ).
BR?, | ———

o
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Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, O, 0), (1, O, 0)
R
R 0
(showing row player’s utility) @
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Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, 0, 0), (1, 0, O)
e [teration 1:
R P o BR',BR* =P, P
R|O0 -1 o (%, ', 0), (", %A, O)
P 1 0
(showing row player’s utility) @
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Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, O, 0), (1, O, O)

e Iteration 1:

R P P o BR',BR* =P, P
R|0 -1 -1 o (%, ', 0), (4, A, 0)
P|l1 0 O e |teration 2:
P11 0 O ® BR12,BR22 =P, P
o (%, %, 0), (5, %, 0O)
(showing row player’s utility) @
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Normal Form Games: Algorithms

e Fictitious Play:

‘b DeepMind

R P P S
R10 -1 -1 1
P 1. 0 0 -1
P 1 0 0 -1
S -1 1 1 0

(showing row player’s utility)

Start with (R, P, S)= (1, O, 0), (1, O, O)

lteration 1:
o BR',BR* =P, P
o (%, a, 0), (A, A, O)
lteration 2:
1 2 _
o BR 2,BR , = P, P
o (', %, 0), (5, %, 0)
lteration 3:
1 2 _
o BR 3,BR - S, S
O ('/4,1/2,'/4), ('/4,'/2,1/4)

O
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Normal Form Games: Algorithms

e Fictitious Play:

b DeepMind

w »w TV TV X

(showing row player’s utility)

Start with (R, P, S)= (1, O, 0), (1, O, O)

lteration 1:

O

BR',BR? = P, P

o (%, a, 0), (A, A, O)
lteration 2:

o BR',BR* =P,P

o (', %, 0), (5, %, 0)
lteration 3:

1 2 _
o BR 3,BR - S, S
O ('/4,1/2,'/4), ('/4,'/2,1/4)

O
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Normal Form Games: Algorithms

e double oracle [HB McMahan 2003]:

1

Tr
N e Start with an arbitrary policy per
I I
9’y Q% 9% player (' ,m% ),
1T1o BR11 BR12 BR13 o Compute (p",q") by solving
pzo Trzo the game at iteration n
2 2 o Then, best response against
Tr22 P BRY| = f -
2 BR? R' R2 (p",q") and get a new best
-2 1. response (BR' BR' ).
BRZ,
‘b DeepMind
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Normal Form Games: Algorithms

e Start with (R, P, S)= (1, O, O), (1, O, O)
e double oracle:

(showing row player’s utility) @
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Normal Form Games: Algorithms

e Start with (R, P, S)= (1, O, O), (1, O, O)
e double oracle:
e |[teration 1:

o BR'.BR* =P, P

R P
o Solve the game : (O, 1, 0), (O, 1,
R10 -1
0)
P 1 0
(showing row player’s utility) @
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Normal Form Games: Algorithms

e Start with (R, P, S)= (1, O, O), (1, O, O)
e double oracle:
e |[teration 1:

o BR'.BR* =P, P

R P S

o Solve the game : (O, 1, 0), (O, 1,

R10 -1 1
0)
P 1 0 -1
e [teration 2:

S -1 10 : ,

o BR,BR%L =S,S

o (Y, 5, '5), (5, V5, A)

(showing row player’s utility) @
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Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell *00):

b DeepMind

(showing row player’s utility)

O
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Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell '*00): 02 04 04

o For row player 1, column player fixed / R P S

0 0 0 (showing row player’s utility)

Cumulative R P S

Regrets
o
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Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell *00): 02 04 04
o For row player 1, column player fixed R P S

o t=0,m = (% %, %), R'=0

0 0 0 (showing row player’s utility)

Cumulative R P S

Regrets
o

b DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell *00): 02 04 04

o For row player 1, column player fixed R P S

_ 1 _ 1T _
o t=0,m,=1(%4"1"%), R =0 R< o | -1 | 1 >

o Req. not playing rock:

m =(-04+04)-0=0

0 0 0 (showing row player’s utility)

Cumulative R P S

Regrets
o
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Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell *00): 02 04 04
o For row player 1, column player fixed R P S

o t=0,m = (% %, %), R'=0

R 0 -1 1

o Reg. not playing paper:
P< 1 0o | -1 >
m =(02-04)-0=-0.2

S -1 1 0

0 02 0 (showing row player’s utility)

Cumulative R I P S

Regrets
o
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Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell *00): 02 04 04
o For row player 1, column player fixed R P S

o t=0,m = (% %, %), R'=0

R 0 -1 1

o Reg. not playing scissors:
P 1 0 -1

anns

0 -0.2 +0.2 I (showing row player’s utility)

m =(-0.2+04)-0-=+0.2

Cumulative R I P S

Regrets
o

b DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell *00): 02 04 04

o For row player 1, column player fixed R P S

1
O = =
t=1, 1, R | o | 1| 1

Normalize positive cumulative regrets (set others to 0) S 1 1 0
0 -0.2 +0.2 I (showing row player’s utility)
Cumulative R I P S

Regrets
o
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Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell *00): 02 04 04
o For row player 1, column player fixed R P S

o t=1, Tr11 =(0,0,1),R"=0.2

0 -0.2 +0.2 I (showing row player’s utility)

Cumulative R I P S

Regrets
o
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Normal Form Games: Algorithms

e Regret-matching (Hart & Mas-Colell *00): 02 04 04
o For row player 1, column player fixed R P S

o t=2, 1T12 =(0,0,1),R"=0.2

0.2 -0.6 +0.2 I (showing row player’s utility)

Cumulative R P S

Regrets
o
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Fictitious Self-Play (FSP) [Heinrich, Lanctot, & Silver ‘15]

e Idea: Fictitious play + reinforcement learning in one online agent

e Update rule in sequential setting equivalent to standard fictitious play (matrix game)

1.

Best response (BR):

(@)
(@)
(@)

Estimate a best response
Trained via RL (e.g. Q-learning)
Circular buffer of (s, a, s’, r) tuples

2. Average policy (AVG):

b DeepMind

(@)
(@)
(@)

Estimate the time-average policy
Trained via supervised learning
Reservoir buffer of (s, a) pairs

0.1

Policy
Mixing
Parameter

0.9

Q-learning

Reservoir
Buffer

Circular
Buffer

Supervised

AVG Imitation

Net

O
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Neural Fictitious Self-Play (NFSP) [Heinrich & Silver ‘16]

e Approximate NE via two neural networks:
e Leduc Hold’em poker experiments: 10 — T—— ; — ; -

“Closeness” to Nash

Exploitability

NESP ——

DQN, average strategy ——

DQN, greedy strategy ——
1 1 1 I 1 1

Ll 1 M |

0.01
1000 10000 100000 le+06

Iterations

e Competitive with strong computer poker programs when it was released

o
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Policy-Space Response Oracles (Lanctot et al. '17)

Random )QN #1 DQN #2

Random 0.5 0.45 0.4

PSRO Meta Agent l DQN #1 0.6 0.55 0.45

DQN #2 0.7 0.6 0.56

@ Google DeepMind General Artificial Intelligence b’


https://arxiv.org/abs/1711.00832

Best Response Policy Iteration and Diplomacy

[Anthony et al. 20]

Classic board game

/-player game

Simultaneous moves

102" - 10%* legal actions per turn

Mixed-motives:
o Winning requires alliances
o Players negotiate for territory

Current focus on no-press variant.

WAL
%\L?
(o
Ve % RUH
% PIC

BRE
|

GAS

3
PAR

MAR

HEL
KIE

¢

O



Best-Response Policy Iteration [Anthony et al. 20]

1. Starting point: Human imitation
Human Dataset

2. Policy Improvement Operator

3. Generate and imitate new Self-play Data
self-play data with improved
policies
Policy 1 ( Supervised
Improvement J L Learning (n, V)

DipNet (Paquette et al. '19) @



Best-Response Policy Iteration [Anthony et al. 20]

e Input:

o Base policy 7,

o Candidate policy 7

o Environment dynamics T(s, a) -> s’

o Value function V(s’)
e Algorithm:

o Ateach turn, given state s:

m Sample a few base profiles a , from z,(s) for all players but i

Sample several candidate actions a, from z (s)
Plug the sampled actions into T{(s, a., a_i) ->s’
Get V(s’) (for player i)
Play the candidate action with the best average value against the
base profiles — sampled best response (SBR)




BRPI Policy Improvement

But what best response should we be imitating?

e |terated Best Responses

Neural Network =
Policies 0

Approximate
Best Response SBR,
Policies

Key
“—_ Best Responds to

+— Imitates

SBR,

o



BRPI Policy Improvement

But what best response should we be imitating?

e |terated Best Responses
e Fictitious Play (1) -- “ala NFSP”

Neural Network
§ n
Policies 0 1

Approximate
Best Response
Policies

Key
“¥—_ Best Responds to

- Imitates (the average of)

SBR,

o



BRPI Policy Improvement

But what best response should we be imitating?

e |terated Best Responses
e Fictitious Play (1) -- “ala NFSP”
e Fictitious Play (2)

Neural Network
Policies

Approximate
Best Response
Policies

Key
¥—_ Best Responds to (the average of)

4 Imitates

o



BRPI in Diplomacy: Results

[SLO0] A2C[90] SL (ours) | FPPI-1  IBR FPPI-2

SL [90] 14.2% 8.3% 16.3% 2.3% 1.8% 0.8%
A2C [90] 15.1% 14.2% 15.3% 2.3% 1.7% 0.9%
SL (ours) 12.6% 7.7% 14.1% 3.0% 1.9% 1.1%
FPPI-1 26.4% 28.0% 259% | 14.4% 7.4% 4.5%
IBR 20.7% 30.5% 258% | 203% 12.9% 10.9%
FPPI-2 19.4% 32.5% 208% | 224% 13.8% 12.7%

Table 1: Average scores for 1 row player vs 6 column players. BRPI methods give an improvement
over A2C or supervised learning. All numbers accurate to a 95% confidence interval of +0.5%. Bold
numbers are the best value for single agents against a given set of 6 agents, italics are for the best
result for a set of 6-agents against each single agent.



Human-Level No-Press Diplomacy [Gray et al. ‘20]

e Human data — DipNet
e DipNet provides policy x and value net v
J

e Use regret matching in stage game

e Get payoffs from sims / search

o Use policy for rollouts + selection 7T
o Value net after some horizon Y
e Human-level play on webdiplomacy - 7
T J
\




Regret Minimization

Counterfactual regret minimization (CFR) (Zinkevich et al. ‘08):

Basis of success in Poker Al for two-player zero-sum games:

Player 1 7'('?

Player 2 7TS

Initial policies iteration, t =0

O



Regret Minimization

Counterfactual regret minimization (CFR) (Zinkevich et al. ‘08):

Basis of success in Poker Al for two-player zero-sum games:

Player 1 7'('? — 7'('%
0 1

Player 2 Ty — 7'('2

O



Regret Minimization

Counterfactual regret minimization (CFR) (Zinkevich et al. ‘08):

Basis of success in Poker Al for two-player zero-sum games:

Player 1 7'('? — 7'('% — 7'('%
0 1 2

Player 2 Ty — 7'('2 — 7-‘-2

O



Regret Minimization

Counterfactual regret minimization (CFR) (Zinkevich et al. ‘08):

Basis of success in Poker Al for two-player zero-sum games:

Player 1

Player 2

( N
0 1 9 T
7-‘-1 B 7-(-1 - ﬂ-l ......... 7-"1
J
( N
0 1 2 T
7-(-2 - 7-‘-2 - 7-‘-2 ......... 7-‘-2
S J
If both players’ average regret — O...
Average strategy (approx
Nash in two-player zero-sum) @



Counterfactual Regret Minimization (CFR)
[Zinkevich et. al’ 08]

e Tabular method (policy iteration) o

e FEach information state, s.
o Compute counterfactual regrets r(s,a)
o Accumulate: R(s,a) +=r(s,a)
o Use regret-matching for new z(s)




Advantage vs. Regrets

A key notion in CFR is an immediate regret:
r(s,a) = ¢z i(s,a) — vz ;i (8)

/

counterfactual g-value

joint policy return to player 7

(player to play at S)

— This is just a (counterfactual) advantage!

O



RL values vs. Counterfactual values

Qﬂ',igsa OJ) e B_Z(S) qﬂ-,i&% OJ)

" " - counterfactual g-value
RL-style” g-value (conditioned

, (weighted sum over histories)
on reaching s)

Probability that s is reached given
opponents’ policies

O



Bayes Normalizer

A

\
N

B_i(s,m) =) Pr(h)

heEs

O



0O-based Policy Gradient

A.K.A. “all-actions” policy gradient
A.K.A. Mean Actor-Critic (Allen et al. ‘17)

VSPG()—Z[VQTF(SCLG ( (s,a;w) Zﬂst 3bw)>

a

O



Regret-based Policy Gradient [Srinivasan et al. ‘18]

Instead of maximizing objective, minimize regret:

+
RPG Zve ( 3 (l,W) — Zw(s,b; O)Q(S,b,W))
b

where (ZL’)+ = max(0, x)

— Gradient descent (instead of ascent)

o



Replicator Dynamics (Taylor & Jonker ‘78)

e Population state I evolves inspired by biologically inspired operators

e Proportion of member i, L; , grows according to their fitness f




Policy Gradient vs. Replicator Dynamics

Policy Gradient (Advantage Actor-Critic)

VeJ(0) =E, [Velogm(a; | s¢;0)A(st, as;w, 0)] 7(a) = m(a)A(a)

e Nash
e PG policy
RD policy

O



Neural Replicator Dynamics [Omidshafiei, Hennes, Morrill et al. ‘19]

Replicator Dynamics Time-discretize
Update policy
parameters to Neural Replicator

minimize distance to Dynamics (NeuRD)
time-discretized RD

Parameterized policy

0; =041+ nzveyt—l(sta at; 0)A(s:,a;0,w)

AN J \\ J

s,a
Logits, where policy is (J

7 = softmax(y)

Advantage q(s,a)-v(s) <€



Neural Replicator Dynamics: Results

Biased Rock-Paper-Scissors Leduc Poker
102 _!I [ | [ | ol [ r 101 'EI [T SN T I T T T O T X 111 IO O A W T 111 B |||||||I=__
L : v
> 10 E 5 = 100 = 3
8 100 : :_ 8 E =
Q g 107 ¢ :
B 107 - S : :
=2 102 3 — PG E ﬁ 10-2 _; — PG -E;
¥ — NeuRD ] ko Z — NeuRD F
10-3 = [ N B R RN [ N B RN | [ N R R RN [ T B 10-3 S O I I YT I I YT B O NN YT R I A RN AT R B AT
10° 10! 102 10° 10° 10' 10?2 10° 10* 10°

Iteration Iteration

O



Advantage Regret-Matching Actor-Critic [Gruslys et al. ‘20]

Goal: sample-based model-free CFR with function approximation.

Monte Carlo CFR [Lanctot et al. ‘09]: Sample trajectories in interesting portions of the game tree.

Q O Q O O !/,DQ o
4

9
S
N,
(2
/4

A U A _ . \ U o
/ | \\\\ 4 Opponent
:::r:(:)zlret;nn:ce : ‘s \\I§s\\’ : reach is
i : v 7 72/ 1 marked with
sampling causes  ____T N ———mmmmm——— _ - q
huge variance ,//’/’" rea arrows
%
P1

o
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Limitations of (Outcome Sampling) Monte Carlo CFR [Lanctot et al ‘09]

b DeepMind

Memory hungry
tabulates all information states

No generalization

Huge variance

We want to solve all those problems by using neural
networks and RL-style trajectory sampling

O

Multi-Agent and Al



Problem 1: Cumulative Regrets

Problem: neural networks can not accumulate regrets

Solution: reformulate CFR in terms of mean regrets

Instead of cumulative regrets RT (3, a)

RY(s,a)

Learn an estimate R’ (s, a) —

Inspired by Regression CFR (RCFR) [Waugh et al. “15]

o
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Problem 2: Sampling and Variance
Corresponds to T CFR iterations

Problem: MCCFR estimator of R (s, a)can have huge variance /
Solution:

1. Maintain a reservoir of past joint policies overepochs {1, 2, .., T}

2. At current epoch t, generate data:
a. Sample past checkpointj~ { 1...t-1 } uniformly
b. Sample our actions with exploratory behavior policy uf(s)
c. Sample opponent actions using 7/
d. Tabulate sampled regrets #/(s, a) with history-based critics
3. Train regressor to predict mean regrets

O
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Problem 2: Sampling and Variance

Problem: MCCFR estimator of R (s, a)can have huge variance
Solution:

1. Maintain a reservoir of past joint policies over epochs {1, 2, .., T }
2. At current epoch t, generate data:

a. Sample past checkpointj~ { 1...t-1 } uniformly

b. Sample our actions with exploratory behavior policy uf(s)

c. Sample opponent actions using 7/

d. Tabulate sampled regrets #/(s, a) with history-based critics
3. Train regressor to predict mean regrets

As a result, we learn W(S, a) — W(S, CL) — R(S, CL@

Information state level constant b!
b DeepMind Multi-Agent and Al



Problem 3: History / world state critics

Problem:

We need to evaluate advantages Gri (R, a) Z%rﬂ (h,b)

But in epoch T we produce trajectories with an exploratory behavior policy u;ﬁ (3)

Solution:

Train value functions using off-policy-RL.

O
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ARMAC Results: benchmark domains

Leduc Poker Liars dice

10° N\ :

— run 1 107! 4= run1
—TUN 2 —run 2

102 103 104 102 103 104

Stable learning curves.

o
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ARMAC Results: action-abstracted no-limit Hold'em

No Limit Texas Hold'em with FCPA abstraction No Limit Texas Hold'em with FCPA abstraction

3x10?

300 \\
250 2x10?2

200 \
150 \ 102

100 \

/\ 6x 10!
50 - —— LBR-FC

"

2.5 5.0 7.5 10.0 12.5 15.0 17.5 10° 10!

Local Best Response (LBR) bound on exploitability: y-axis = exploitation value, x-axis = epochs
Roughly matches the performance of state of art Poker bots from 2016

o

'b DeepMind Multi-Agent and Al



ARMAC Results: Atari

)
Breakout Montezuma’s Revenge
=

[
600 § sak 1§ Y
550 o : 3

2 2.2k §
500 § e

2 k-5
450 - © 18k B
400 1‘6k N
350 — 1.4k —
300 1.2k -
250 1k -
200 — 800 -
150 — 600 —
100 — 400 —

50 total_steps1 200 total_steps1
0
1

| | | I | | | | | | I I I I I I T T T T T T T T T T T T T T
\00‘&\,790\&\500\‘\@0\‘\@0\‘\600\‘\400\‘\@0\‘\900\x\ DRSS N & r,p““\ S S 9,00“\ U SN S NN

Hypothesis: regret matching has nice exploratory policies

O
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Learning with Regularization: Friction FoReL

[Perolat et al. ‘21]

Follow The Regularized Leader:

:/Qirs(ai)ds and 7Tt = argmax eAAA (p, yt)

0
With : A*(p,y) = (y,p) — ¢i(p) and ¢;(p) is a
regularisation for the policy projection.

In zero-sum two-player games, the
following quantity is preserved and

the learning trajectory is recurrent:
2

J(y) = Z (07 (yi) — (w77

1.0

o e o
IS o ©
L L L

Player 1 probability for action 1

e
)

o
o

Adding a policy dependent term:

, . 3 . ’]Ti(a,i) T
ri(a) =r'(a",a”*)—nlog +nlog ———=
pi(at) p(a™")

This policy dependent term
transforms a recurrent learning
dynamic to a convergent one:

2
GID =Y Wheers ~VE] —0Y KL(x

b
o
L

o
N

Player 1 probability fro a
)
S

0.0
0.0 02 04 06 08 10

Player 2 probability for




Learning with Regularization Friction FoReL
[Perolat et al. ‘21]

Video 50x slower

Increasing speed of convergence

No regularization (0.0) Small regularization (0.05) Medium regularization (0.1) Large regularization (0.5) Absurd regularization (10.0)

Increasing bias to the solution

We want to learn at high regularization and low bias!

O



Learning with Regularization: Friction FoReL

[Perolat et al. ‘21]

Regularization centered around

Solution : [0.38,0.48, 012] 7T |

V2!
Regularization centered around
[0.38,048,012]. 7T

Solution : [0.29, 0.62, 0.07]

O



Learning with Regularization: Friction FoReL

[Perolat et al. ‘21]

Regularization centered around

o

Solution : [0.38,0.48, 012] 7T |

[V5 %5 Y5 .
Regularization centered around
[0.38,048,012]. 7T

Solution : [0.29, 0.62, 0.07]

- (i i (o) ia)
r(a) = r'(a',a”")—nlog ——= +nlog ——=
o (at) Ty (a™?)

Converges to 771
PN o () W ol G
rx(a) =7'(a’,a™")—nlog ———= + nlog ——
mi(a’) m '(a™?)

Converges to 7792

Recentering around the previous fixed
point will decrease strictly the distance
to the Nash of the original game:

N
— % - — 1 ) . )
E(n*, ) — 2, 1) = —E(7k, TE—1) + p E (my, + 05, + K},)

=1
<0




Learning with Regularization

Regularization centered around

Solution : [0.38, 0.48, 0.12]

l

V2!

Regularization centered around

[0.38,0.48, 0.12].

Solution : [0.29, 0.62,

0.07]

Regularization centered around
[0.29, 062, 0.07].

Solution : [0.19, 0.72, 0.07]

Regularization centered around
[019, 0.72, 0.07].

Solution : [013 0.76 0.09]

O



Convergence in Sequential Imperfect
Information Games (Kuhn Tabular):

NashConv

NashConv

Friction FoReL: Experiments in Sequential

Games

Ir: 0.001, rf: 0.001

10°

—— policy
avg policy

0 le+06
iterations

Ir: 0.001, rf: 0.002
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Convergence in Sequential Imperfect Information Games
(Leduc with Neural Network and a NeuRD loss):

fixed mu and decaying eta (to a fixed eta):
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Hidden Information Game Competition (HIGC)

Hidden Information Games Competition (2021)

About Contact Docs Games Rules Schedule Registration Talk to us at Discord (=)

Hidden Information Games Competition (HIGC) tests Al bots on large two-player zero-sum games
with imperfect information, such as Poker or DarkChess. The players do not have perfect knowledge
about everything that goes on in the game: they receive only partial observations about the world's
real state. The goal of the Al is to play the games as well as possible against any opponent.

Organized by:

RECONNAISSANCE

BLIND CHESS
——

CTU

CENTER FOR CZECH TECHNICAL
INFORMATICS UNIVERSITY
ccccccccc IN PRAGUE

Join the community at the Discord server

DeepMind

e Reconnaissance Blind Chess
e Gin Rummy
e One hidden game!

higcompetition.info/



http://higcompetition.info/

DeepMind

A Plea to “Go Wide™:
Beyond Zero-Sum
and Domain-Specific
Evaluation

o



-

Arthur Samuel - Checkers , ¢ | ALPHAGDO

DeepMind - Go (AlphaGo) @

Gerald Tesauro - Backgammon



Minimax

Max-min: P1 looks fora 771 such that

v1 = max min uj (7, m2)
1 T2

Min-max: P1 looks for a 771 such that

v1 = min max u1 (7, m2)
2o 71

In two-player, zero-sum these are the same!

John von Neumann 1928 ---> The Minimax Theorem

o

b DeepMind Multi-Agent and Al



Consequences of Minimax

% % %
The optima 7T — (7’(’1,7'('2)
e These exist! (They sometimes might be stochastic.)

e Called a minimax-optimal joint policy. Also, a Nash equilibrium.

e They are interchangeable:

/ / /
e Vrnt, " = (7Tik, 7'('>2I< ), (Wf ; 7T>2k) also minimax-optimal
e Each policy is a best response to the other.

O

b DeepMind Multi-Agent and Al



Minimax (Outside Two-Player Zero-Sum Games)

Max-min: Player i looks fora 7[; such that:

maxmain

: = max min u;(m;, m_;)  (Paranoid)

-

U

o

‘b DeepMind Multi-Agent and Al



Minimax (Outside Two-Player Zero-Sum Games)

Max-min: Player i looks fora 7[; such that:

maxmain

Y;

= max min u; (7, T—;) (Paranoid)
Uy ™3

Min-max: Player j looks fora 77 (against TU;,ie.in 7T —4) such that

minmax

Y;

= min max u;(m;, 7_;)

ey (Optimistic)

o

b DeepMind Multi-Agent and Al



Nash Equilibrium

A joint policy used by all n players: mw = (7'('1 s T2y * 0 7Tn)

such that Vi, u; (7T) > max U; (ng, 7T—i)

Ui

o

b DeepMind Multi-Agent and Al



Properties of Nash Equilibria

A __B _C

Suppose each player computes an equilibrium: 7T ) 70 . 70

o

6 DeepMind Multi-Agent and Al



Properties of Nash Equilibria

A __B _C

Suppose each player computes an equilibrium: 7T | 70 . 70

.(ABC’)

™ ,Ty , T3 is generally not an equilibrium

o

b DeepMind Multi-Agent and Al



Properties of Nash Equilibria

A __B _C

Suppose each player computes an equilibrium: 7T | 70 . 70

o (mfl 1 mS)

e Each equilibrium might have different values for all players

is generally not an equilibrium

o

‘b DeepMind Multi-Agent and Al



Properties of Nash Equilibria

A __B _C

Suppose each player computes an equilibrium: 7T | 70 ] 70

o (mfl 1 mS)

e Each equilibrium might have different values for all players

is generally not an equilibrium

e Which equilibrium should you “choose™?

o Equilibrium selection problem

o

b DeepMind Multi-Agent and Al



Properties of Nash Equilibria

A __B _C

Suppose each player computes an equilibrium: 7T : T : T

® (71-14’ 7-(-23’ 71-3?) is generally not an equilibrium

e Each equilibrium might have different values for all players ; A‘J
e Which equilibrium should you “choose”?

o Equilibrium selection problem

e Also PPAD-Hard (Daskalakis, Goldberg, Papadimitriou + Chen & Deng)

o

b DeepMind Multi-Agent and Al



Some Thought Questions

e How do you tell if chess program is super-human?

O



Some Thought Questions

e How do you tell if chess program is super-human?
e What is “super-human” Iterated Prisoner’s Dilemma?

O



Some Thought Questions

e How do you tell if chess program is super-human?
e What is “super-human” Iterated Prisoner’s Dilemmma?
e If minimax is optimal, why doesn’t it win RoShamBo competitions?
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Some Thought Questions

How do you tell if chess program is super-human?
What is “super-human” Iterated Prisoner’s Dilemma?
If minimax is optimal, why doesn’t it win RoShamBo competitions?

What should general agents learn in a multiagent setting?

O



Back to the Essentials: What'’s the Goal?

/i

C Al
2aking, is to maximize the total amount of reward it
re

Reinforcement

Learning

ot o , J policy

Richard S. Sutton and Andrew G. Barto N ’ | \\ 7_‘_ 3k

77 {1 :,’
' /




Hindsight Rationality
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Hindsight Rationality

% Agenti

o



Hindsight Rationality
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Hindsight Rationality in Multiagent

Environments

01

R

Oj

| Agent 1 } a4

9
r2 | Agent 2 %

joint action Et
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joint state Sg
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Hindsight Rationality in Multiagent
Environments

Agent i perceives:
t—2 _t—2 t—1
) 7(0' s T )7(Oi , I

e Set of deviations considered: P

O



Hindsight Rationality in Multiagent
Environments

Agent i perceives:

L,

e Set of deviations considered: P

o Tt

i chosen in a way that minimizes regret w.r.t. ®
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Hindsight Rationality in Multiagent
Environments

Agent i perceives:

S (02_27 Tf_z)a (02_17 i

e Set of deviations considered: P

.t

e .. based on history of correlated play!

chosen in a way that minimizes regret w.r.t. ®

O



Hindsight Rationality in Multiagent
Environments

Agent i perceives:

(07 (), (k)

e Set of deviations considered: P

.t

e .. based on history of correlated play!

chosen in a way that minimizes regret w.r.t. ®

Classes of (extensive-form) correlated equilibria

O



Hindsight Rationality

Deviation sets P

e Functions of the entire sequence of past plays
e Sequential deviations too (not just entire policy deviations)
e New counterfactual deviations and associated equilibria in self-play

arXiv.org > c¢s > arXiv:2012.05874

Computer Science > Computer Science and Game Theory
[Submitted on 10 Dec 2020 (v1), last revised 17 Dec 2020 (this version, v2)]

Hindsight and Sequential Rationality of Correlated Play

Dustin Morrill, Ryan D'Orazio, Reca Sarfati, Marc Lanctot, James R. Wright, Amy Greenwald, Michael Bowling

Efficient Deviation Types and Learning for Hindsight Rationality in Extensive-Form Games

Dustin Morrill, Ryan D'Orazio, Marc Lanctot, James R. Wright, Michael Bowling, Amy Greenwald

—  See also first COMARL seminar by Michael Bowling

O



Correlated Equilibrium (CE)

CE arise as a result of learning
(More) compatible with Bayesian perspectiv
Compatible with a prescriptive agenda (via n

Tractable!! (to find one)

D

Robert Aumann @




Correlated Equilibrium Example

Rock Paper  Scissors
Rock 0,0 0,1 1,0
Paper 1,0 0,0 U;1
Scissors 0,1 1.0 0,0

Figure 7.6: Shapley’s Almost-Rock-Paper-Scissors game.

Shoham & Leyton-Brown ‘09



Correlated Equilibrium Example

Rock Paper  Scissors
Rock 0,0 0,1 1,0
Paper 1,0 0,0 0,1
Scissors 0,1 1,0 0,0

Figure 7.6: Shapley’s Almost-Rock-Paper-Scissors game.

Shoham & Leyton-Brown ‘09



Correlated Equilibrium Example

Rock

Paper

Scissors

Figure 7.6: Shapley’s Almost-Rock-Paper-Scissors game.

Rock Paper  Scissors
0,0 0,1 1,0
1,0 0,0 0,1
0,1 1,0 0,0

Shoham & Leyton-Brown ‘09

9. Then recommend each player their

r recommendation?



Correlated Equilibrium Example

Rock

Paper

Scissors

Figure 7.6: Shapley’s Almost-Rock-Paper-Scissors game.

Rock Paper  Scissors
0,0 0,1 1,0
1,0 0,0 0,1
0,1 1,0 0,0

Shoham & Leyton-Brown ‘09

9. Then recommend each player their

r recommendation?
ty %. Is this a CE? If so, which one



Calibrated Learning [Foster & Vohra ‘97]

The following process converges to a CE:

Repeat over many trials t — T:

1. Compute a “calibrated forecast” of the opponents’ policies (i.e.
asymptotically consistent as t — +inf)
2. Best respond to the forecast

Claim: basis for a “best response stream” outside zero-sum

O



Bayesian Perspectives and Meta-Learning

Meta-learning of Sequential Strategies

Pedro A. Ortega, Jane X. Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan Pascanu,
Nicolas Heess, Joel Veness, Alex Pritzel, Pablo Sprechmann, Siddhant M. Jayakumar, Tom McGrath, Kevin
Miller, Mohammad Azar, Ian Osband, Neil Rabinowitz, Andrds Gyorgy, Silvia Chiappa, Simon Osindero,
Yee Whye Teh, Hado van Hasselt, Nando de Freitas, Matthew Botvinick, and Shane Legg
DeepMind

Meta-trained agents implement Bayes-optimal agents

Vladimir Mikulik; Grégoire Delétang; Tom McGrath; Tim Genewein;
Miljan Martic, Shane Legg, Pedro A. Ortega’
DeepMind
London, UK

O



A Generalized Training Approach for MARL

[Muller et al. ‘19]
e Game-theoretic training:

o (Meta-)solve empirical game

o Find best response oracles
e Qutside two-player zero-sum:
o Use a-Rank as a tractable
solution concept

T 33
2 07- 122
=
o 0.6 1.0 <
< 04 - :
B ()3 - 0.6
2 0.2 0.4 -
0.1 - 0.2 -
0~0-| III|II| LI | Ooj 1 1 IIIIII| 1 L)
10° 10! 10° 10!
Iteration Iteration

(a) 3-player Kuhn.  (b) 4-player Kuhn.

2.0
1.5 -
1.0 -
- _X
0.0 +——rrrrory

10° 10!

Iteration

(c) 5-player Kuhn.

14 -
124

10 — a-Rank
2 — PRD
g' — Uniform
O-I IIIIIIII' Trran

10° 10!

Iteration

(d) 3-player Leduc.

Figure 4: Results for poker domains with more than 2 players.

O



Joint Policy-Space Response Oracles (JPSRO)
[Marris et al. ‘21]

Game-theoretic training:

|
o (Meta-)solve empirical game
o Find best response oracles

Finds joint distribution

New CE meta-solvers driving by Gini impurity (eq. selection)

Converges to CE & CCE
Works for n-player general-si
Stochastic meta-solver poss

— @ICML

2.0 1

Value Sum
(under MWCE)

o
wn

©
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=
o
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T ;/ t g 2 g g 4 L th g g g g
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PSRO Iterations

2-player Trade Comm (simplified trading game)

O



A Plea to “Go Wide”: Beyond Domain-Specific
Evaluation
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A Plea to “Go Wide”: Beyond Domain-Specific
Evaluation

e Progress in Deep RL benefited from the generality of Atari
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A Plea to “Go Wide”: Beyond Domain-Specific
Evaluation

e Progress in Deep RL benefited from the generality of Atari

- - - - - -

Agent57: Outperforming
the human Atari
benchmark




A Plea to “Go Wide”: Beyond Domain-Specific
Evaluation

e Progress in Deep RL benefited from the generality of Atari
e Games provide the formalism, have been the heart of multiagent RL

A B |(a)

Figure 2: An initial board (left) and a situation requiring a probabilistic choice for A (right).

A A

Figure 1: A 10 by 10 grid world.



A Plea to “Go Wide”: Beyond Domain-Specific
Evaluation

e Progress in Deep RL benefited from the generality of Atari
e Games provide the formalism, have been the heart of multiagent RL
e The MARL community is split across many different types:

o Competitive vs. Cooperative vs. Mixed / Social Dilemmas

A B |(&)

Figure 2: An initial board (left) and a situation requiring a probabilistic choice for A (right).

O



A Plea to “Go Wide”: Beyond Domain-Specific
Evaluation

e Progress in Deep RL benefited from the generality of Atari

e Games provide the formalism, have been the heart of multiagent RL

e The MARL community is split across many different types:
o Competitive vs. Cooperative vs. Mixed / Social Dilemmas

o A ggngrnll\/ intellicent acent ia ranahle arrncee manv anvirnnments!

._ —K(p) y/m
T(ﬂ-) ’ 2 Complexity V'UJ . Value achieved

M E E penalty

Measure of Intelligence

Sum over environments

“Intelligence measures an agent's ability to achieve goals in a wide range of environments” @

-- Shane Legg & Marcus Hutter ‘07, "Universal Intelligence’



A Plea to “Go Wide”: Beyond Domain-Specific
Evaluation

Progress in Deep RL benefited from the generality of Atari
Games provide the formalism, have been the heart of multiagent RL
The MARL community is split across many different types:

o Competitive vs. Cooperative vs. Mixed / Social Dilemmas
A generally intelligent agent is capable across many environments!
An artificial general intelligence (AGI) can handle all cases

O



A Plea to “Go Wide”: Beyond Domain-Specific
Evaluation

Progress in Deep RL benefited from the generality of Atari
Games provide the formalism, have been the heart of multiagent RL
The MARL community is split across many different types:

o Competitive vs. Cooperative vs. Mixed / Social Dilemmas
A generally intelligent agent is capable across many environments!
An artificial general intelligence (AGI) can handle all cases
Games:

o Are externally defined or inspired by human problems
Have been traditional benchmarks of rationality for thousands of years
Have formally-defined interactions
Can be easily simulated and run many times

o O O O

Are enjoyable to play and easy to demonstrate with humans

o



Why Generality in MARL?

Independent learners with their training partners: Independent learners with similarly-trained



http://www.youtube.com/watch?v=Z5cpIG3GsLw
http://www.youtube.com/watch?v=zilU0hXvGK4

Self-Play / Independent Agents Do Not
Generalize

The Hanabi Challenge: A New Frontier for Al Research

Agent ID

Hfﬂlﬂwﬂ
7 R Avg
Team ID

(a) Ad-hoc results for two players.

25.0

22.5

20.0

17.5

15.0

12.5

31028

Agent ID

4 s 7 10 Avg
Team 1D

(b) Ad-hoc results for four players.

[Bard et al. 19]
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21015

o



How Do We Get There?

Some ideas:

1. More domains in empirical evaluations
2. More openly available code .. for MARL specifically
3. Increased focus on ad-hoc setting for evaluation
a. Especially with human(s) in the loop, where possible
4. Wider and more dynamic evaluation regimes

o



Importance of Open-Source and Widely Usable
Libraries

theano

Microsoft
Cognitive
Toolkit




OpenSpiel: A Framework for RL in Games

github.com/deepmind/open_spiel/

Supports:
n-player games
Zero-sum, coop, general-sum

([

(

e Perfect / imperfect info

e Simultaneous-move games

- One main API for all games
- Atari Learning Env. of multiagent / games
- Release 1.0 coming in August (!)

- with new mean-field game API

O


https://github.com/deepmind/open_spiel/

MAVA: A New Open-Source Framework for

MARL
e Scalable multiagent training framew&g&!ll.);,eg
o Built on open-source technologies: M AVA
m Reverb A A
m Launchpad https://github.com/instadeepai/Mava
m Acme

e Integration with many environments / libraries!
o PyMARL

OpenSpiel

PettingZoo

Flatland

Robocup

Starcraft Multi-Agent Challenge (SMAC)

o o O O O


https://github.com/instadeepai/Mava

Scalable Evaluation of MARL with Melting Pot

[Leibo, Duéiiez-Guzman, Vezhnevets,
Agapiou, et al. ‘21]

Compare algorithms/agents

“atulaisighy
W

Focus on generalization

-

Over 80 unique test scenarios!
Eval in held out test scenarios

Agnostic to training method




Potential General Evaluation Regimes

e A suite of general learning agents that can play all sides/roles
e A suite of games (domains) to evaluate on

Agent match-ups:

e Agent versus fixed reference set
e Agent versus agent

- Agent sampling distr: fixed versus adaptive
- Inter-match memory: none (blank slate) vs. learning (lifelong)

O



Potential General Evaluation Regimes: A vs.
fixed ref set

a la Melting F(’lot. Evaluating agent A: -« With
test-time adaptation

For all games in selected games, G:

e Decide on a fixed reference set Ref(G)

o E.g.self-play RL benchmark, known strategies, etc.

e FEvaluate A over/with other agents in Ref(G)
e Get overall return V(G)

Report V(G) for all selected games

O



Potential General Evaluation Regimes: A vs.
fixed ref set

a la Melting I:loéc Evaluating agent A: - With

test-timea ptatlon
Agent A is always learning.

For all games in selected games, G:

e Ensure observations encode identification of G.
e Decide on a fixed reference set Ref(G)
o E.g.self-play RL benchmark, known strategies, etc.
e Evaluate A over/with other agents in Ref(G)
e Get overall return V(G)

Report V(G) for all selected games

o



Potential General Evaluation Regimes: A vs.
fixed ref set

eltln Pot. Evaluating agent A: .. with

(ia ve 1str
or all games in selected games, G:

e Decide on a fixed reference set Ref(G)
o E.g.self-play RL benchmark, known strategies, etc.
e Initialize OppDist(Ref(G)) to uniform
e Forepochst=1..T:
o Evaluate A over/with other agents in Ref(G) using OppDist
o Get overall return V(G, t)
o Adjust OppDist adversarially

Report V(G, t =1..T) for all selected games.

o



Potential General Evaluation Regimes: Agent vs.
Agent

e Similarly to fixed reference set, except:
o Reference set is not fixed
o Other agents might be in reference sets

Goal: fully online, continuous, lifelong evaluation across many environments

O



Conclusions & Summary

e Game-theoretic approaches to partially observable games

o O o O O

Inspired by two-player zero-sum games

Shown to scale to very large domains

Two main streams: best response and no-regret

Many ideas can be generalized outside two-player zero-sum
Correlated equilibria as link between prescriptive/descriptive
views

O



Conclusions & Summary

e Game-theoretic approaches to partially observable games
Inspired by two-player zero-sum games

Shown to scale to very large domains

Two main streams: best response and no-regret

Many ideas can be generalized outside two-player zero-sum

o O o O O

Correlated equilibria as link between prescriptive/descriptive
views
o Let's “Go Wide": evaluate agents across many environments!
o Pursuit of general agents requires general evaluation
o Many efforts to help make this happen
o “Never been a better time than right now” ) -~ RHCP, Give it Away @



Thank You! ... Any Questions?

Marc Lanctot

lanctot@deepmind.com

mlanctot.info/

o
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