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Multi-Agent and AI

Normal Form Games: Algorithms

● Inspired by two-player zero-sum games

Two main “streams”

1. Fictitious play / best response stream

2. No-regret stream
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Normal Form Games: Algorithms

● double oracle [HB McMahan 2003]:
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Normal Form Games: Algorithms

● double oracle:

R     P     S   

R 0     -1     1

P 1      0     -1

S       -1     1    0

● Start with (R, P, S)= (1, 0, 0), (1, 0, 0)

● Iteration 1:

○ BR1
1,BR2

1 = P, P

○ Solve the game : (0, 1, 0), (0, 1, 

0)

● Iteration 2:

○ BR1
2,BR2

2 = S, S

○ (⅓, ⅓, ⅓), (⅓, ⅓, ⅓)

(showing row player’s utility)
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Normal Form Games: Algorithms

● Regret-matching (Hart & Mas-Colell ‘00):
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Normal Form Games: Algorithms

● Regret-matching (Hart & Mas-Colell ‘00):
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Normal Form Games: Algorithms
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Normal Form Games: Algorithms

● Regret-matching (Hart & Mas-Colell ‘00):

○ For row player 1, column player fixed
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Normal Form Games: Algorithms

● Regret-matching (Hart & Mas-Colell ‘00):

○ For row player 1, column player fixed

○ t=1, π1
1 = (0, 0, 1), R1 = 0.2 
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Normal Form Games: Algorithms

● Regret-matching (Hart & Mas-Colell ‘00):

○ For row player 1, column player fixed

○ t=2, π1
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● Idea: Fictitious play + reinforcement learning in one online agent
● Update rule in sequential setting equivalent to standard fictitious play (matrix game)

Fictitious Self-Play (FSP) [Heinrich, Lanctot, & Silver ‘15]

Reservoir 
Buffer

Circular 
Buffer

AVG 
Net

BR 
Net

Policy 
Mixing

Parameter

1. Best response (BR): 
○ Estimate a best response
○ Trained via RL (e.g. Q-learning)
○ Circular buffer of (s, a, s’, r) tuples

2. Average policy (AVG): 
○ Estimate the time-average policy
○ Trained via supervised learning
○ Reservoir buffer of (s, a) pairs

0.9

0.1

Q-learning

Supervised
Imitation
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Neural Fictitious Self-Play (NFSP) [Heinrich & Silver ‘16]

“Closeness” to Nash

● Approximate NE via two neural networks:
● Leduc Hold’em poker experiments:

● Competitive with strong computer poker programs when it was released 



General Artificial Intelligence

Active
AgentRandomDQN# 2

   Meta
Solver

DQN# 1

   Meta
Solver

Policy-Space Response Oracles (Lanctot et al. ‘17)

PSRO Meta Agent

 Policy 
Set

Meta Strategy

Random DQN #1 DQN #2

Random 0.5 0.45 0.4

DQN #1 0.6 0.55 0.45

DQN #2 0.7 0.6 0.56

Random

DQN #1

DQN #2

DQN #K
Random DQN #1

Random 0.5 0.45

DQN #1 0.6 0.55

Random

Random 0.5

DQN #1RandomOpponent 
Policy

https://arxiv.org/abs/1711.00832


Best Response Policy Iteration and Diplomacy 
[Anthony et al. ‘20]

● Classic board game
● 7-player game
● Simultaneous moves
● 1021

 - 1064 legal actions per turn
● Mixed-motives:

○ Winning requires alliances
○ Players negotiate for territory

Current focus on no-press variant.
 



Best-Response Policy Iteration [Anthony et al. ‘20]

  

Policy 
Improvement

Self-play Data

Supervised 
Learning (ᴨ, V)

Human Dataset
1. Starting point: Human imitation

2. Policy Improvement Operator

3. Generate and imitate new 
self-play data with improved 
policies

DipNet (Paquette et al. ‘19)



Best-Response Policy Iteration [Anthony et al. ‘20]

   ● Input:
○ Base policy 𝜋b
○ Candidate policy 𝜋c
○ Environment dynamics T(s, a) -> s’
○ Value function V(s’)

● Algorithm:
○ At each turn, given state s:

■ Sample a few base profiles a-i from 𝜋b(s) for all players but i
■ Sample several candidate actions ai from 𝜋c(s)
■ Plug the sampled actions into T(s, ai , a-i) -> s’
■ Get V(s’) (for player i)
■ Play the candidate action with the best average value against the 

base profiles → sampled best response (SBR)

Policy 
Improvement

Self-play Data

Supervised 
Learning (ᴨ, V)

Human Dataset



BRPI Policy Improvement

But what best response should we be imitating?

● Iterated Best Responses
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BRPI Policy Improvement

But what best response should we be imitating?

● Iterated Best Responses

● Fictitious Play (1)  --  “à la NFSP”
● Fictitious Play (2)



BRPI in Diplomacy: Results

   



Human-Level No-Press Diplomacy [Gray et al. ‘20]

● Human data → DipNet
● DipNet provides policy 𝜋 and value net v
● Use regret matching in stage game
● Get payoffs from sims / search

○ Use policy for rollouts + selection
○ Value net after some horizon

● Human-level play on webdiplomacy

  

𝜋
𝜋

𝜋

𝜋

𝜋

𝜋

𝜋

v
v v v

v

v

v

v



Regret Minimization

Counterfactual regret minimization (CFR) (Zinkevich et al. ‘08):

Basis of success in Poker AI for two-player zero-sum games:

Initial policies iteration, t = 0

Player 1

Player 2
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Regret Minimization

Counterfactual regret minimization (CFR) (Zinkevich et al. ‘08):

Basis of success in Poker AI for two-player zero-sum games:

Player 1

Player 2

.  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .

Average strategy (approx 
Nash in two-player zero-sum)

If both players’ average regret → 0...



Counterfactual Regret Minimization (CFR) 
[Zinkevich et. al’ 08] 

● Tabular method (policy iteration)
● Each information state, s:

○ Compute counterfactual regrets r(s,a)
○ Accumulate: R(s,a) += r(s,a)
○ Use regret-matching for new 𝜋(s)

e.g.



Advantage vs. Regrets

A key notion in CFR is an immediate regret:

                  

counterfactual q-value

joint policy return to player    

   (player to play at    )  

→ This is just a (counterfactual) advantage!



RL values vs. Counterfactual values

  

“RL-style” q-value (conditioned 
on reaching s)

counterfactual q-value 
(weighted sum over histories)

Probability that s is reached given 
opponents’ policies 



Bayes Normalizer

 

h1 h2 h3 h4     h5      h6s



Q-based Policy Gradient

A.K.A. “all-actions” policy gradient

A.K.A. Mean Actor-Critic (Allen et al. ‘17)



Regret-based Policy Gradient  [Srinivasan et al. ‘18]

 Instead of maximizing objective, minimize regret:

where 

→ Gradient descent (instead of ascent)



Replicator Dynamics (Taylor & Jonker ‘78)

● Population state     evolves inspired by biologically inspired operators
● Proportion of member i,        , grows according to their fitness 

in Reinforcement Learning terms:



● Nash● Nash
● PG policy
● RD policy

Policy Gradient vs. Replicator Dynamics
Policy Gradient (Advantage Actor-Critic) Replicator Dynamics

logit space stateless tabular case



Replicator Dynamics Time-discretize

Parameterized policy

Update policy 
parameters to 

minimize distance to 
time-discretized RD

Neural Replicator 
Dynamics (NeuRD)

Neural Replicator Dynamics [Omidshafiei, Hennes, Morrill et al. ‘19]

Logits, where policy is 

Advantage q(s,a)-v(s)



Biased Rock-Paper-Scissors Leduc Poker

Neural Replicator Dynamics: Results
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Advantage Regret-Matching Actor-Critic [Gruslys et al. ‘20]

P1

P2

P1

Goal: sample-based model-free CFR with function approximation.

Monte Carlo CFR [Lanctot et al. ‘09]: Sample trajectories in interesting portions of the game tree.

Problem:
Importance 
sampling causes
huge variance

Opponent 
reach is 
marked with 
red arrows
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Limitations of (Outcome Sampling) Monte Carlo CFR [Lanctot et al ‘09]

Memory hungry
tabulates all information states

No generalization

Huge variance

We want to solve all those problems by using neural 
networks and RL-style trajectory sampling



Multi-Agent and AI

Problem 1: Cumulative Regrets

Problem: neural networks can not accumulate regrets

Solution: reformulate CFR in terms of mean regrets

Instead of cumulative regrets

Learn an estimate  

Inspired by Regression CFR (RCFR) [Waugh et al. ‘15]



Multi-Agent and AI

Problem:  MCCFR estimator of                 can have huge variance
Solution: 

1. Maintain a reservoir of past joint policies over epochs { 1, 2, …, T } 
2. At current epoch t, generate data:

a. Sample past checkpoint j ~ { 1… t-1 } uniformly
b. Sample our actions with exploratory behavior policy
c. Sample opponent actions using  
d. Tabulate sampled regrets                with history-based critics

3. Train regressor to predict mean regrets

Problem 2: Sampling and Variance
Corresponds to T CFR iterations



Multi-Agent and AI

Problem:  MCCFR estimator of                 can have huge variance
Solution: 

1. Maintain a reservoir of past joint policies over epochs { 1, 2, …, T }
2. At current epoch t, generate data:

a. Sample past checkpoint j ~ { 1… t-1 } uniformly
b. Sample our actions with exploratory behavior policy
c. Sample opponent actions using  
d. Tabulate sampled regrets                with history-based critics

3. Train regressor to predict mean regrets

As a result, we learn 

Problem 2: Sampling and Variance

Information state level constant
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Problem:

We need to evaluate advantages  

But in epoch T we produce trajectories with an exploratory behavior policy  

Solution: 

Train value functions using off-policy-RL.

Problem 3: History / world state critics



Multi-Agent and AI

ARMAC Results: benchmark domains

Leduc Poker Liars dice

Stable learning curves.
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ARMAC Results: action-abstracted no-limit Hold’em

Local Best Response (LBR) bound on exploitability: y-axis = exploitation value, x-axis = epochs 
Roughly matches the performance of state of art Poker bots from 2016



Multi-Agent and AI

ARMAC Results: Atari

Hypothesis: regret matching has nice exploratory policies

Montezuma’s RevengeBreakout



Learning with Regularization: Friction FoReL 
[Perolat et al. ‘21]

Follow The Regularized Leader:

In zero-sum two-player games, the 
following quantity is preserved and 
the learning trajectory is recurrent:

Adding a policy dependent term:

This policy dependent term 
transforms a recurrent learning 
dynamic to a convergent one:



Learning with Regularization Friction FoReL 
[Perolat et al. ‘21]

 Increasing speed of convergence

 Increasing bias to the solution

Video 50x slower

No regularization (0.0) Small regularization (0.05) Medium regularization (0.1) Large regularization (0.5) Absurd regularization (10.0)

We want to learn at high regularization and low bias!



Regularization centered around [⅓, ⅓, ⅓ ].

Solution : [0.38, 0.48, 0.12]

Regularization centered around 
[0.38, 0.48, 0.12].

Solution : [0.29,  0.62,  0.07]

Learning with Regularization: Friction FoReL 
[Perolat et al. ‘21]



Regularization centered around [⅓, ⅓, ⅓ ].

Solution : [0.38, 0.48, 0.12]

Regularization centered around 
[0.38, 0.48, 0.12].

Solution : [0.29,  0.62,  0.07]

Learning with Regularization: Friction FoReL 
[Perolat et al. ‘21]

Recentering around the previous fixed 
point will decrease strictly the distance 
to the Nash of the original game:

Converges to 

Converges to 



Regularization centered around [⅓, ⅓, ⅓ ].

Solution : [0.38, 0.48, 0.12]

Regularization centered around 
[0.38, 0.48, 0.12].

Solution : [0.29,  0.62,  0.07]

Regularization centered around 
[0.29,  0.62,  0.07].

Solution : [0.19, 0.72,  0.07]

Regularization centered around 
[0.19, 0.72,  0.07].

Solution : [0.13 0.76  0.09]

Learning with Regularization



Friction FoReL: Experiments in Sequential 
Games

Convergence in Sequential Imperfect 
Information Games (Kuhn Tabular):

Convergence in Sequential Imperfect Information Games 
(Leduc with Neural Network and a NeuRD loss):

fixed mu and decaying eta (to a fixed eta):

fixed eta and refreshed mu 



Hidden Information Game Competition (HIGC)

● Reconnaissance Blind Chess
● Gin Rummy
● One hidden game!

   higcompetition.info/

http://higcompetition.info/


2
A Plea to “Go Wide”:
Beyond Zero-Sum 
and Domain-Specific
Evaluation



Games, RL, and AI

Arthur Samuel - Checkers

Gerald Tesauro - Backgammon

IBM - Chess (DeepBlue)

DeepMind - Go (AlphaGo)

Poker: DeepStack & Libratus



Multi-Agent and AI

        Max-min: P1 looks for a         such that

Min-max: P1 looks for a         such that 

In two-player, zero-sum these are the same!

John von Neumann 1928    ---> The Minimax Theorem

Minimax



Multi-Agent and AI

The optima

● These exist! (They sometimes might be stochastic.)

● Called a minimax-optimal joint policy. Also, a Nash equilibrium.

● They are interchangeable:

●

● Each policy is a best response to the other.

Consequences of Minimax

also minimax-optimal



Multi-Agent and AI
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Minimax (Outside Two-Player Zero-Sum Games)

 (Paranoid)



Multi-Agent and AI

Max-min: Player i looks for a          such that: 

Min-max: Player j looks for a          (against        , i.e. in            )   such that

Minimax (Outside Two-Player Zero-Sum Games)

 (Paranoid)

  (Optimistic)
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    A joint policy used by all n players: 

        such that

Nash Equilibrium
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Suppose each player computes an equilibrium: 

Properties of Nash Equilibria
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Multi-Agent and AI

Suppose each player computes an equilibrium:

●                                    is generally not an equilibrium

● Each equilibrium might have different values for all players

● Which equilibrium should you “choose”?

○ Equilibrium selection problem

● Also PPAD-Hard (Daskalakis, Goldberg, Papadimitriou + Chen & Deng)

 

Properties of Nash Equilibria
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Some Thought Questions

● How do you tell if chess program is super-human?
● What is “super-human” Iterated Prisoner’s Dilemma?
● If minimax is optimal, why doesn’t it win RoShamBo competitions?
● What should general agents learn in a multiagent setting?



Back to the Essentials: What’s the Goal?

Ch. 4

“The agent’s goal, roughly speaking, is to maximize the total amount of reward it 
receives over the long run.”

→ Search for an optimal policy 
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Hindsight Rationality in Multiagent 
Environments
  Agent i perceives:

● Set of deviations considered:
●         chosen in a way that minimizes regret w.r.t.
● … based on history of correlated play! 

Classes of (extensive-form) correlated equilibria



Hindsight Rationality

Deviation sets 

● Functions of the entire sequence of past plays
● Sequential deviations too (not just entire policy deviations)
● New counterfactual deviations and associated equilibria in self-play

→ See also first COMARL seminar by Michael Bowling



Correlated Equilibrium (CE)

● CE arise as a result of learning
● (More) compatible with Bayesian perspective (Foster & Vohra ‘97) 
● Compatible with a prescriptive agenda (via mediated equilibrium)
● Tractable!! (to find one)

Robert Aumann



Correlated Equilibrium Example

  

Shoham & Leyton-Brown ‘09
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● 𝞹1 = 𝞹2  = (⅓, ⅓, ⅓)   is a Nash eq.
○ Each player gets util ⅓

● Mediator 𝞵: sample each cell with prob 1/9. Then recommend each player their 
strategy privately. 
○ Do players want to deviate from their recommendation?
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Correlated Equilibrium Example

 

● 𝞹1 = 𝞹2  = (⅓, ⅓, ⅓)   is a Nash eq.
○ Each player gets util ⅓

● Mediator 𝞵: sample each cell with prob 1/9. Then recommend each player their 
strategy privately. 
○ Do players want to deviate from their recommendation?

● 𝞵’: select each off-diagonal with probability ⅙. Is this a CE? If so, which one 
should we prefer?

 

  

 

Shoham & Leyton-Brown ‘09



Calibrated Learning [Foster & Vohra ‘97]

The following process converges to a CE:

Repeat over many trials t → T:

1. Compute a “calibrated forecast” of the opponents’ policies (i.e.  
asymptotically consistent as t → +inf)

2. Best respond to the forecast

Claim: basis for a “best response stream” outside zero-sum



Bayesian Perspectives and Meta-Learning

 



A Generalized Training Approach for MARL 
[Muller et al. ‘19]

  
● Game-theoretic training:

○ (Meta-)solve empirical game
○ Find best response oracles

● Outside two-player zero-sum:
○ Use 𝛼-Rank as a tractable 

solution concept



Joint Policy-Space Response Oracles (JPSRO) 
[Marris et al. ‘21]

● Game-theoretic training:
○ (Meta-)solve empirical game
○ Find best response oracles

● Finds joint distribution
● New CE meta-solvers driving by Gini impurity (eq. selection)

● Converges to CE & CCE
● Works for n-player general-sum 
● Stochastic meta-solver possible for scale

→ @ICML   

   

2-player Trade Comm (simplified trading game)
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A Plea to “Go Wide”: Beyond Domain-Specific 
Evaluation

● Progress in Deep RL benefited from the generality of Atari
● Games provide the formalism, have been the heart of multiagent RL
● The MARL community is split across many different types:

○ Competitive vs. Cooperative vs. Mixed / Social Dilemmas
● A generally intelligent agent is capable across many environments!

“Intelligence measures an agent’s ability to achieve goals in a wide range of environments”

-- Shane Legg & Marcus Hutter ‘07, “Universal Intelligence”

Measure of Intelligence

Sum over environments

Complexity 
penalty

Value achieved
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A Plea to “Go Wide”: Beyond Domain-Specific 
Evaluation

● Progress in Deep RL benefited from the generality of Atari
● Games provide the formalism, have been the heart of multiagent RL
● The MARL community is split across many different types:

○ Competitive vs. Cooperative vs. Mixed / Social Dilemmas
● A generally intelligent agent is capable across many environments!
● An artificial general intelligence (AGI) can handle all cases
● Games:

○ Are externally defined or inspired by human problems 
○ Have been traditional benchmarks of rationality for thousands of years
○ Have formally-defined interactions
○ Can be easily simulated and run many times
○ Are enjoyable to play and easy to demonstrate with humans



Why Generality in MARL?

Independent learners with their training partners:     Independent learners with similarly-trained 
partners:

http://www.youtube.com/watch?v=Z5cpIG3GsLw
http://www.youtube.com/watch?v=zilU0hXvGK4


Self-Play / Independent Agents Do Not 
Generalize 

The Hanabi Challenge: A New Frontier for AI Research [Bard et al. ‘19]   



How Do We Get There?

Some ideas:

1. More domains in empirical evaluations
2. More openly available code … for MARL specifically
3. Increased focus on ad-hoc setting for evaluation

a. Especially with human(s) in the loop, where possible
4. Wider and more dynamic evaluation regimes



Importance of Open-Source and Widely Usable 
Libraries 
  



OpenSpiel: A Framework for RL in Games

Supports:

● n-player games
● Zero-sum, coop, general-sum
● Perfect / imperfect info
● Simultaneous-move games

- One main API for all games
- Atari Learning Env. of multiagent / games
- Release 1.0 coming in August (!)

- with new mean-field game API

    github.com/deepmind/open_spiel/

https://github.com/deepmind/open_spiel/


MAVA: A New Open-Source Framework for 
MARL

[Pretorius, 
Tessera, Smit, et al. ‘21]● Scalable multiagent training framework:

○ Built on open-source technologies:
■ Reverb
■ Launchpad
■ Acme

● Integration with  many environments / libraries!
○ PyMARL
○ OpenSpiel
○ PettingZoo
○ Flatland
○ Robocup
○ Starcraft Multi-Agent Challenge (SMAC)

https://github.com/instadeepai/Mava

https://github.com/instadeepai/Mava


Scalable Evaluation of MARL with Melting Pot
[Leibo, Duéñez-Guzmán, Vezhnevets, 

Agapiou, et al. ‘21]

● Compare algorithms/agents
● Focus on generalization
● Over 80 unique test scenarios!
● Eval in held out test scenarios
● Agnostic to training method



Potential General Evaluation Regimes

● A suite of general learning agents that can play all sides/roles
● A suite of games (domains) to evaluate on

Agent match-ups:

● Agent versus fixed reference set
● Agent versus agent

- Agent sampling distr: fixed versus adaptive
- Inter-match memory: none (blank slate) vs. learning (lifelong)



Potential General Evaluation Regimes: A vs. 
fixed ref set

… with 
test-time adaptation
 à la Melting Pot. Evaluating agent A:

For all games in selected games, G:

● Decide on a fixed reference set Ref(G)
○ E.g. self-play RL benchmark, known strategies, etc.

● Evaluate A over/with other agents in Ref(G)
● Get overall return V(G)

Report V(G) for all selected games
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… with 
test-time adaptation
 à la Melting Pot. Evaluating agent A:

Agent A is always learning.

For all games in selected games, G:

● Ensure observations encode identification of G.
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○ E.g. self-play RL benchmark, known strategies, etc.
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Potential General Evaluation Regimes: A vs. 
fixed ref set

… with 
adaptive distr.
 à la Melting Pot. Evaluating agent A:

For all games in selected games, G:

● Decide on a fixed reference set Ref(G)
○ E.g. self-play RL benchmark, known strategies, etc.

● Initialize OppDist(Ref(G)) to uniform
● For epochs t = 1 … T:

○ Evaluate A over/with other agents in Ref(G) using OppDist
○ Get overall return V(G, t)
○ Adjust OppDist adversarially 

Report V(G, t = 1 .. T) for all selected games.



Potential General Evaluation Regimes: Agent vs. 
Agent

● Similarly to fixed reference set, except:
○ Reference set is not fixed
○ Other agents might be in reference sets

Goal: fully online, continuous, lifelong evaluation across many environments



Conclusions & Summary

● Game-theoretic approaches to partially observable games
○ Inspired by two-player zero-sum games
○ Shown to scale to very large domains
○ Two main streams: best response and no-regret
○ Many ideas can be generalized outside two-player zero-sum
○ Correlated equilibria as link between prescriptive/descriptive 

views



Conclusions & Summary

● Game-theoretic approaches to partially observable games
○ Inspired by two-player zero-sum games
○ Shown to scale to very large domains
○ Two main streams: best response and no-regret
○ Many ideas can be generalized outside two-player zero-sum
○ Correlated equilibria as link between prescriptive/descriptive 

views
● Let’s “Go Wide”: evaluate agents across many environments!

○ Pursuit of general agents requires general evaluation
○ Many efforts to help make this happen
○ “Never been a better time than right now”   :)    -- RHCP, Give it Away 



Thank You!   … Any Questions?

Marc Lanctot

lanctot@deepmind.com

mlanctot.info/

mailto:lanctot@deepmind.com

