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ABSTRACT
In this work we introduce a differentiable version of the Com-
positional Pattern Producing Network, called the DPPN.
Unlike a standard CPPN, the topology of a DPPN is evolved
but the weights are learned. A Lamarckian algorithm, that
combines evolution and learning, produces DPPNs to re-
construct an image. Our main result is that DPPNs can
be evolved/trained to compress the weights of a denoising
autoencoder from 157684 to roughly 200 parameters, while
achieving a reconstruction accuracy comparable to a fully
connected network with more than two orders of magnitude
more parameters. The regularization ability of the DPPN
allows it to rediscover (approximate) convolutional network
architectures embedded within a fully connected architec-
ture. Such convolutional architectures are the current state
of the art for many computer vision applications, so it is sat-
isfying that DPPNs are capable of discovering this structure
rather than having to build it in by design. DPPNs exhibit
better generalization when tested on the Omniglot dataset
after being trained on MNIST, than directly encoded fully
connected autoencoders. DPPNs are therefore a new frame-
work for integrating learning and evolution.

Keywords
CPPNs, Compositional Pattern Producing Networks, de-
noising autoencoder, MNIST

1. INTRODUCTION
Compositional Pattern Producing Networks (CPPN) [25]

were a major advance in evolutionary computation because
they permitted evolution to efficiently optimize a model in-
crementally starting from a small number of parameters.

A CPPN is a very effective way of encoding a high dimen-
sional output space with a low number of parameters, assum-
ing some structure in the output space. This means that one
can evolve CPPNs to represent images; as in Picbreeder [24],
where a crowd of Internet users evolve images by selecting
which CPPNs to breed.
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The way CPPNs are currently optimized is by evolving
the topology and the weights with NEAT [27]. While effec-
tive for low dimensional output spaces, this process becomes
inefficient for very large parameter spaces.

However, one can train neural networks with millions of
parameters by exploiting gradient-based learning methods
[22]. The purpose of this work is to combine the success of
gradient-based learning on neural networks with the capac-
ity to optimize topologies provided by evolution. We call
this new model the Differentiable Pattern Producing Net-
work (DPPN). The DPPN works by Lamarckian evolution,
i.e there is inheritance of acquired (learned) characteristics.

We show that using DPPNs we can rapidly reconstruct
images by using fewer parameters than the number of pixels,
and that DPPNs can be used in a HyperNEAT-like frame-
work [26] as an indirect encoding of a larger neural net-
work. DPPNs also work in a Darwinian/Baldwinian frame-
work [23] in which the learned weights are not inherited
directly, only the initial weights of the DPPN are inher-
ited. However, the Lamarckian algorithm consistantly out-
performs the other two variants.

The DPPN is more data efficient than the CPPN. In addi-
tion, it improves upon existing machine learning techniques
by acting as a strong regularizer encouraging simpler so-
lutions compared to those obtained by directly optimizing
the weights of the larger network. For example we show
that when a DPPN is trained using our algorithm to pro-
duce the 157684 parameters of a fully connected denoising
autoencoder for MNIST digit reconstruction (MNIST is a
standard benchmark for supervised learning consisting of la-
belled handwritten digits) [29], it generates a convolutional
architecture embedded within the fully connected feedfor-
ward network, in which each hidden unit contains a blob-like
28×28 weight matrix where the blob is smoothly moved over
the receptive fields of hidden nodes. Evolution also discovers
to crop and magnify the image. For example, a DPPN with
only 187 parameters achieved a binary cross entropy (BCE)
of 0.09 on the MNIST test set. Generalization to the Om-
niglot character set [15] is also demonstrated to be superior
to an equivalent directly encoded network.

2. BACKGROUND AND RELATED WORK
The CPPN is a feedforward network which contains not

only sigmoid and Gaussian functions but includes a wider set
of transfer functions, for example periodic functions such as
sine functions. CPPNs were invented by Ken Stanley [25] as
an abstraction of natural development. CPPNs map a geno-
type coordinate set to a phenotype parameter set without



local interaction between phenotypic elements, that is, each
individual component of the phenotype is determined inde-
pendently of every other component. The CPPN is in effect
convolved over a set of coordinates to generate the output.

For example, a CPPN used to produce a square image of
side length N would use an input coordinate set comprising
N×N vectors of length 4; one vector datapoint for each pixel
position in the N×N image to be produced. Typically, each
datapoint is composed of the x,y coordinates, distance d(x,y)
from the center of the image, and a fixed bias 1. The NxN
datapoints are passed through the CPPN one by one, and
the output image is generated by the CPPN sequentially,
pixel by pixel. The CPPN’s topology and weights are opti-
mized by an evolutionary algorithm. A good example of this
methodology is Picbreeder [24], in which a crowd of Inter-
net users evolve images by selecting which CPPNs to breed.
Both the topology and weights of the CPPN are evolved us-
ing mutation and crossover, starting with a minimal topol-
ogy which grows nodes and edges. The NeuroEvolution of
Augmented Topologies (NEAT) algorithm [27] is used to
constrain crossover to homologous parts of the CPPN, and
to maintain topology diversity.

In HyperNEAT [26], CPPNs are used as indirect com-
pressed encodings of the weights of a larger neural network.
The inputs to the CPPN are the coordinates of the presynap-
tic and postsynaptic neuron, and the output is the weight
joining those two neurons. If a single CPPN must encode
multiple layers of a deeper neural network then there are two
possibilities, either an extra input is given signaling which
layer of weights the CPPN is outputting [19], or the CPPN
is constrained to always have multiple output nodes, with a
specific node outputting the weight for its assigned layer [21].

A limitation of the CPPN approach is that weights are
evolved rather than being learned by gradient-based meth-
ods that utilize backpropagation. Such methods scale better
than evolutionary methods with respect to the number of pa-
rameters in the model. They are able to optimize millions
of parameters at once, e.g. for convolutional neural net-
works for performing object classification on ImageNet [14].
CPPNs and convolutional neural networks have previously
been studied with CPPNs being used to evolve adversarial
examples for convolutional network classifiers on ImageNet
[20]. However, in that work the CPPN is not modified by
gradient descent.

Convolutional neural networks [6, 16] have made great
strides in recent years in practical performance [14], to the
point where they are now a critical component of many of
the best systems for challenging artificial intelligence tasks
[9, 2, 18, 12]. These architectures were historically inspired
by the structure of the mammalian visual system, namely
the hierarchical structure of the ventral stream for visual
processing [5] and the local, tiled nature of “receptive fields”
in the primary visual cortex [10].

The engineering success of convolutional neural networks
relative to fully connected neural networks is largely due
to the strong regularization imposed by the convolutional
structure: with far fewer weights to learn, the networks
generalize better with less data. This architecture places
strong prior assumptions on the data - namely that they are
translation-invariant - and in most applications the architec-
ture is decided on by the model designer rather than being
automatically driven by the data.

It has also been shown that even greater improvements in

the compression of neural network weights should be pos-
sible - even after removing most of the weights from the
filters of a trained convolutional neural network, it is pos-
sible to predict the missing weights with high accuracy [3].
This allows compression of the weights of convolutional neu-
ral networks in order to make them computationally more
efficient [?, 11]. It is of interest whether the appropriate sim-
plifying structures can be discovered rather than designed,
much like how evolution stumbled upon such structure for
the mammalian visual system.

Recent work applied CPPNs in the HyperNEAT frame-
work to evolve the weights of the 5 layer LeNet-5 convolu-
tional neural network for MNIST character recognition [28].
Classification performance with HyperNEAT alone used to
optimize the weights of this network was very poor after 2500
generations, with only 50% correct classifications. When
HyperNEAT was used to initialize the weights of LeNet-
5, prior to several epochs of gradient descent learning, cor-
rect classifications increased to 90%. However, error rates of
0.8% were obtained with backpropagation alone [17]. Also,
there is no reduction in the number of parameters required
to represent the resultant network because backpropagation
is applied to the full convolutional network and not to the
CPPN itself.

Previous work exists in evolving the topology of neural
networks for learning. For example Bayer et al evolved
the topology of the cells of an LSTM (Long Short Term
Memory) recurrent neural network for sequence learning [1],
and more recently Jozefowicz et al explored the topology of
LSTMs and GRUs improving on both [31].

3. METHODS
Here we will begin by introducing the DPPN. We then

describe the overall algorithm for optimizing a DPPN which
consists of an evolutionary part which contains a learning
part in its inner loop.

3.1 DPPNs
The DPPN is a modified implementation of a CPPN that

can compute the gradients of functions with respect to the
weights. A CPPN is a function d that maps a coordinate vec-
tor ~c to a vector of output values ~p = (p1, p2, . . . , pn). The
function is defined as a directed acyclic graph G = {N , E}
where N is a set of nodes and E is a set of edges between
nodes. The set of input and output nodes are fixed - one for
each dimension of the coordinate and output vectors respec-
tively. Each node ni ∈ N has a set of input edges Ei that
can be changed by evolution, and a transfer function σi ∈ Σ
from a fixed list of nonlinearities associated with it. Each
edge ej ∈ E has a weight wj as well as input and output
nodes ninj , n

out
j . The activation ai at node ni is given by

σi(
∑
ej∈Ei wja

in
j ) – the weighted sum over activations from

input nodes passed through an activation function. The out-
put values are simply the activations of the output nodes.

For the DPPN, the node types used are as in previous
CPPN papers [25], i.e. sigmoid, tanh, absolute value, Gaus-

sian (e−x
2/2), identity and sine, plus rectified linear units

(ReLU): σ(x) = max(x, 0). We experiment with two kinds of
input node, an identity node (as normally used in a CPPN)
and a fully connected linear layer mapping ~c to a vector of
equal dimensionality. There are no parameters in a node
other than the weights and biases of its linear layer. The
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Figure 1: Initial topology of the DPPN consists of two ran-
domly chosen hidden units and an input and output node.
Transfer functions are gaussian, sin, abs, ReLU, tanh, sig-
moid, identity. An input node with a fully connected linear
layer is shown, but we also use the more standard identity
function for the input node with comparable results.

transfer functions all have fixed unlearnable parameters. Each
DPPN is initialized with the topology shown in Figure 1 with
two random hidden units. We also experiment with complex
initializations of fully connected feedforward DPPNs ranging
from 5 to 15 initial nodes. The DPPN is encoded genetically
as a connection matrix and a node list.

3.2 Denoising Autoencoders
A denoising autoencoder [29] is an unsupervised learning

framework for neural networks. The network takes as input
a noisy version x̃ of the training data x, passes it through a
set of layers fθ(x̃) = fnθn(fn−1

θn−1(. . . f1
θ1

(x̃) . . .)) with param-
eters θ = {θ1, . . . , θn} and computes a loss `(x, fθ(x̃)) be-
tween the noiseless data and the prediction of the network.
In our experiments we use the mean squared error and the
binary cross entropy. The loss function is usually minimized
by some variant of gradient descent. In the DPPN, the out-
put parameters p are directly mapped into the parameters
θ of the denoising autoencoder.

3.3 Optimisation Algorithm
A generic evolutionary algorithm can be used in the outer

loop of the optimization algorithm. Learning takes place
in each fitness evaluation just before evaluating the fitness
function; a number of steps of gradient-based learning are
performed starting from the inherited weights. In the Lamar-
ckian version the learned weights are inherited (after muta-
tion) by the offspring. In the Darwinian version the learned
weights are discarded, and the initial weights of the par-
ents are inherited (after mutation) by the offspring. We
now describe the evolutionary algorithm, and the embedded
learning algorithm in more detail.

3.3.1 The Evolutionary Algorithm
Two different evolutionary algorithms were used. The

simpler evolutionary algorithm is the microbial genetic algo-
rithm (mGA) [8] with a population size of 50. Two random
agents are chosen, their weights are trained (see next sec-

input : P – population of DPPNs

function GetFitness(DPPN d)
for 1000 steps do

Parameters ~p← d(~c)
Copy ~p into denoising autoencoder parameters θ
Choose minibatch x of MNIST images
Generate noisy minibatch x̃

Gradients gi ← ∂`(x,fθ(x̃))
∂wi

wrt DPPN weights

Follow Adam update to DPPN weights {wi} using {gi}
return fitness = -MSE for 1000 MNIST training images
function Main()
for 1000 tournaments do

Choose two DPPN, d1, d2 ∈ P
(f1, f2)← GetFitness(d1, d2)
Choose winner A and loser B
B ← Mutate(Crossover(A,B))

Algorithm 1: DPPN Trainer

tion), each agent’s fitness is evaluated, and a mutated copy
of the winner overwrites the loser. There may be some prob-
ability of crossover, in which case the loser is parent B and
the winner is parent A (see section on crossover). The second
genetic algorithm is an asynchronous binary tournament se-
lection algorithm running in parallel. This is identical to the
mGA except that whenever more than two workers return a
fitness, random pairs are chosen to undergo binary tourna-
ments. This setup is used for the MNIST and Omniglot ex-
periments which are computationally more demanding. The
fitness of the DPPN is the negative loss.

3.3.2 Mutation and Crossover Operators
Three types of topology mutation are applied: add ran-

dom node, remove random edge, add random edge. When
a node is added, a random input node and a random out-
put node are chosen and the new node is connected between
them, care being taken to maintain the feedforward property
of the DPPN. The initial weights to and from the new node
are drawn from the same distribution as the weights of the
initial DPPN. The probability of node addition, edge addi-
tion and removal are typically, 0.3, 0.5, and 0.5 respectively
per replication event. We also experiment with applying
Cauchy mutation to the copy of the winner after fitness eval-
uation with a multiplicative co-efficient of 0.001 [30]. Cauchy
mutation is preferred because most mutations are small, but
because of its heavy tail, a few are big, allowing escape from
local optima.

The crossover operator is a merge in which the hidden
units of both parents are combined, the input and output
node of parent B is discarded, the input unit of parent A is
connected to all the hidden units of parent B with random
weights, and all the hidden units of parent B are connected
to the output unit of parent A by random weights. Thus,
each crossover results in an approximate doubling of the
DPPN. No attempt is made as in NEAT to use innovation
numbers. After crossover, a topological sort algorithm is
used to reorder the connection matrix to make it upper-right
triangular to enforce and check the feedforward property.

3.3.3 The Learning Algorithm
The learning phase embedded in the fitness evaluation cy-

cle of an agent consists of 1000 steps of training carried out
with a minibatch size of 32 data points into the DPPN.



Gradients of the loss with respect to the CPPN weights are
computed by backpropagation, which first computes the gra-
dients of the loss with respect to the parameters, and then
passes these backwards through the CPPN to be combined
with the gradients of the parameters with respect to the

CPPN weights: ∂`(x,fθ(x̃))
∂ ~w

= ∂`(x,fθ(x̃))
∂~p

∂~p
∂ ~w

. For modifying

weights of the DPPN we use Adam (adaptive moment es-
timation) [13] which is a momentum-based flavor of SGD
that adaptively computes individual learning rates for each
parameter by keeping an estimate of the first and second
moments of the gradients. Two hyper-parameters, β1 and
β2, are used to control the decay rates of two moving aver-
ages, mt for the gradient and vt for the squared gradient.
These moving averages are then bias-corrected, resulting in
an estimate of the moments m̂t and v̂t. This algorithm is
well suited for problems that incorporate a large number of
parameters, as it is memory and computationally efficient.
It combines the advantages of two popular methods: Ada-
Grad [4], which behaves well in presence of sparse gradients,
and RMSProp [7], which is able to cope with non-stationary
objectives.

3.4 Experiments
In this section we describe experiments on image recon-

struction, character denoising, compression ratios, and gen-
eralization from MNIST to Omniglot.

3.4.1 Image Reconstruction Experiments
A single randomly chosen 28× 28 MNIST digit is chosen

to be reconstructed. This is a simple benchmark task used
to test various hyperparameter settings of the DPPN. The
input batch to the DPPN is a 28 × 28 matrix of length 8
vectors. Each vector is constructed as

(x, y,
√
x2 + y2, 1,

x

N
,
y

N
, x mod N, y mod N), with

x and y normalized to values in [−1, 1], sampled in evenly
spaced steps over the image, and with the target output for
each input data point being the normalized pixel value at
that (x, y) location of the image. N is a number encoded
by the genotype of the DPPN. The fitness of a DPPN is the
negative MSE on the entire 28×28 image. One evolutionary
run consists of a 1000 binary tournaments, after which the
best fit agent is chosen and the best MSE reported.

3.4.2 Denoising of MNIST images with a
convolutional autoencoder

The task is to reconstruct MNIST digits after 10% of pix-
els are set to zero in the image. The convolutional network
has an encoding layer with ReLU activation functions and
a decoding layer with ReLU activation functions, with two
kernels 7×7 in each layer, a stride of 2 and no pooling. The
total number of parameters in this network is 202. For this
experiment a DPPN with 6 output nodes is used to encode
the weights of the kernels and the biases of the convNet.
The first four outputs of the DPPN encode respectively:
the weights of the first encoding kernel, the second encoding
kernel, the first decoding kernel, and the second decoding
kernel.The final two outputs encode biases. The input vec-
tor of each data point into the DPPN is 4 in length and
encodes [x, y,

√
x2 + y2, 1]. 7 × 7 data points of length 4

are input into the DPPN, corresponding to 7× 7 outputs of
length 6. These are interpreted as the weights of the con-
volutional autoencoder. Up to 10000 fitness evaluations are
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Figure 2: The dual evolution and learning framework for
training a DPPN based autoencoder.

carried out, each evaluation corresponding to the presenta-
tion of 32000 MNIST images from the training set. The
final performance of a run is the MSE on a test set of 1000
MNIST images.

3.4.3 Indirect encoding of a fully connected network
The task is to reconstruct MNIST digits after 10% of pix-

els are set to zero in the image. Figure 2 shows the logic of
the training. We learn to indirectly encode a fully connected
feedforward denoising autoencoder with one encoding layer
with sigmoid activation functions and one decoding layer
with sigmoid activation functions. The hidden layer has 100
units which are arranged on a 10× 10 grid. Thus there are
28× 28× 10× 10× 2 + 28× 28 + 10× 10 = 157684 parame-
ters (weights and biases) which is three orders of magnitude
more parameters than the convNet which performs the same
task. The DPPN which encodes these parameters has two
outputs, one for the encoding layer and one for the decoding
layer. To obtain these parameters we passed 157684 input
vectors into the DPPN each of length 8 which encode the
following properties of the autoencoder:

(xin, yin, xout, yout,Din,Dout, layer, 1),

where xin and yin are coordinates of the input neuron, xout

and yout are the coordinates of the output neuron, and Din,
and Dout are distances from the center of the input and out-
put neuronal grids respectively. This produces 157684×2 pa-
rameters as output, but only the first 28×28×10×10+10×10
elements of the first row and the second 28× 28× 10× 10 +
28 × 28 elements of the second row are used to encode the
parameters of the autoencoder. A similar process consisting
of a forwards pass through the DPPN, a copy of the DPPN
outputs to the autoencoder, a forward and a backwards pass
through the autoencoder with a MNIST minibatch, followed
by backpropagation of these gradients through the DPPN is
iterated 1000 times per fitness evaluation. After this train-
ing, the fitness of the DPPN is defined as the negative BCE
(or MSE) over 1000 random MNIST images from the train-
ing set. The final loss of the run is the BCE (or MSE) on a
test set of 1000 random MNIIST images.



4. RESULTS
In this section, we present the experimental results.

4.1 Image Reconstruction Experiments
Figure 3(right) shows the details of an evolutionary run in

which a population of 50 DPPNs, with crossover probability
of 0.2, initialized with 4 node DPPNs, is evolved to recon-
struct the handwritten digit 2, evolved with the full Lamar-
ckian algorithm, i.e. where learned weights are inherited by
the offspring. Figure 3(middle) shows the same setup but
with Baldwinian evolution, i.e. where learning takes place
but where there is no inheritance of acquired characteristics.
Finally Figure 3(left) shows the same setup with pure Dar-
winian evolution with Cauchy mutation of weights with a
co-efficient of 0.001 in which there is no learning of weights
at all. This final setting is the closest to a CPPN. In the
examples shown Lamarckian inheritance achieves a MSE of
0.0036, Baldwinian 0.02 and Darwinian 0.12.

Batch runs of size 10 (without crossover) show Lamar-
ckian learning to have a mean MSE of 0.021 (±0.006)1,
compared to Baldwinian runs which show a mean MSE of
0.037 (±0.006) and Darwinian runs which show a mean MSE
of 0.079 (±0.006). We therefore conclude that for this task,
Lamarckian is more effective than Baldwinian which is more
effective than Darwinian. Traditionally CPPNs were ini-
tialized with minimal networks. We find it is also effective
to initialize DPPNs with larger networks (5 to 10 hidden
units) which are fully connected in the upper right triangle
of the connection matrix. Batch runs show a mean MSE of
0.02 (±0.006) starting large, compared to a mean MSE of
0.021 (±0.006) starting small, showing no significant differ-
ence. We also tried a hybrid variant with learning rates and
Cauchy mutation. There was a small non-significant benefit
to adding Cauchy noise for all learning rates investigated,
therefore in the later runs we used a Cauchy mutation co-
efficient of 0.0001. Additive bloat punishments produced
no improvement at any level, and produced a significantly
worse MSE when greater than 0.001(n + e), where n and
e are the number of nodes and edges in the DPPN. 1000
steps of learning produced a mean MSE of 0.026 (±0.006)
compared to a 100 steps of learning which produced a mean
MSE of 0.035 (±0.006), so more learning is better.

4.2 The Effect of Crossover
Figure 4 shows the same setup as a Figure 3(right) run

but without crossover. There is an order of magnitude differ-
ence in MSE, 0.003 with crossover compared to 0.03 without
crossover. The reconstruction is qualitatively worse without
crossover. Batch runs of size 10 show an order of magni-
tude benefit of crossover, with MSE of 0.005 (±0.001) with
crossover probability 0.2, compared to a MSE of 0.021 (±0.006),
without crossover. A trivial reason for the benefit of crossover
may be that it merely increases the size of the networks (717
compared to 112 parameters) so allowing a greater number
of parameters to be optimized by gradient descent, possi-
bly reducing the chance of getting stuck in a local optimum.
Another factor is that merging DPPNs allows informational
merging of different useful parts of the image reconstructed
by different individuals in the population.

1All intervals in this paper represent 95% confidence inter-
vals.

Figure 4: Without crossover the image reconstruction is
more messy and has a higher MSE of 0.03 after 1000 tour-
naments (left), compared to an MSE of 0.003 with crossover
(right). Number of parameters without crossover = 112

Figure 5: DPPN produced encoding and decoding kernels
for a convolutional denoising autoencoder on MNIST. Left:
Encoding and decoding kernels. Right: Digit reconstruc-
tions

4.3 Can the DPPN efficiently compress the
weights of denoising autoencoders?

Figure 5 shows the 2 encoding (left column) and 2 de-
coding kernels (right column) evolved by the DPPN for the
convolutional denoising autoencoder, along with the digit
reconstructions and fitness graph showing that 1000 tour-
naments are sufficient for an MSE of 0.01 on the test set.
The DPPN discovers regular on-center and off-center recep-
tive fields resembling those of retinal ganglion cells for image
smoothing which removes most of the uncorrelated dropout
noise from the reconstruction.

Figure 10 compares the performance of a DPPN with
(top) and without crossover (bottom) on producing the 157684
parameters of a fully connected denoising autoencoder. In
both cases the DPPN rediscovers convolutions by learning
the on/off center kernels and then convolving them over the
28×28 receptive fields of the 100 hidden units. The decoding
28× 28 layer also discovers this convolutional structure in a
fully connected network. This is in contrast to the receptive
fields normally learned by such networks which are much
less regular, see Figure 8. The extent of effective compres-
sion achieved of the autoencoder’s parameters by the DPPN
is remarkable, see Figure 7, which shows that the DPPN en-
coded network can achieve much lower BCE (0.096) than a
directly encoded network with the same number of param-
eters (> 0.24). Furthermore, it is capable of generalization
to the Omniglot dataset with BCE of 0.121 which is better
than an equivalent directly encoded network, see Figure 6.
A video in Supplementary material shows the evolution of
MNIST reconstructions throughout a run.



Darwinian MSE = 0.07 Params = 130          Baldwinian MSE = 0.018  Params = 657      Lamarckian MSE = 0.0037, Params = 525                

Target

Figure 3: Image reconstruction of the same handwritten digit 2 with Lamarckian, Baldwinian, and Darwinian inheritance of
weights. The insert target image shows the character to reconstruct. The grids show the reconstructions produced during
evolutionary runs of 1000 tournaments, sampled every 10 tournaments, starting on the top left and proceeding to the bottom
right corner. Lamarckian is better than Baldwinian is better than Darwinian.

Identity input: 55420 tournaments
BCE =0.091, 187 Parameters

 

Linear input: 33200 tournaments
BCE =0.090, 251 Parameters

 

Figure 9: 10× 10 representations of MNIST digits in the hidden layer of the denoising autoencoder (top) and corresponding
encoding layer weights for the denoising autoencoder (bottom). Left shows a 187 parameter network with no linear layer at
input, and Right shows a 251 parameter network with a fully connected linear layer at input. The hidden layer representations
have been rotated, cropped and inverted by the encoder.

5. DISCUSSION AND CONCLUSION
The results demonstrate that DPPNs and the associated

learning algorithms described here are capable of massively
compressing the parameters of larger neural networks, and
improve upon the performance of CPPNs trained in a Dar-

winian manner. Because the hidden layer has a 10 × 10
grid structure, we can visualize the activations in the hid-
den layer for each digit, see Figure 9 which shows the hidden
layer activations of a fully connected denoising autoencoder
encoded by a DPPN with an identity node as input vs. a
DPPN with a fully connected linear node as input. Both
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Figure 10: Discovery of convolutional filters in a fully connected denoising autoencoder. The input digits are shown on the
left, followed by the 10 x 10 neuron encoding layers weight matrix (E) and a 5 x 5 sample of the 28 x 28 neuron decoding
layers weight matrix (D), and finally the reconstructions (R) on the right. Note the highly regular weight matrices of the E
and D layers compared to the directly encoded E and D matrices in the next figure.

Omniglot Images with 10% noise Reconstructions

Figure 6: Omniglot reconstructions by a 191 parameter net-
work trained only on MNIST(BCE = 0.096) achieves a BCE
of 0.121.

DPPN MNIST 
191 Parameters BCE = 0.096

DPPN Omniglot 
191 Parameters BCE = 0.12

Figure 7: The loss of directly encoded networks with hidden
layer sizes ranging from 1 to 100 nodes are compared with
the DPPN encoded 100 Hidden node network.

produce comparable BCEs with roughly the same number
of parameters.

  Direct Encoder Weight Matrix      Direct Decoder Weight Matrix 

Figure 8: The encoding and decoding weight matrices of
a fully connected 100 hidden unit denoising autoencoder
trained directly are much less regular. This network was
trained with MSE criterion for 500 epochs (500 × 50000
samples). The network contained 157684 parameters. It
achieved an BCE of 0.0761 on MNIST and generalized with
BCE of 0.121 to Omniglot.

One of the advantages of this symbiosis between evolution-
ary and gradient-based learning is that it allows optimiza-
tion to better avoid being stuck in local optima or saddle
points. In the future, this framework holds potential for
training much deeper neural networks and being applied to
other learning paradigms.
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