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Workshop Plan

Private & Confidential

10:00 -10:15 Workshop Intro

10:15 - 12:00 Introduction to Mulitagent Reinforcement Learning (MARL)
12:00 -12:30 Break for Lunch

12:30 - 2:30 Adapting RL to Zero-Sum Games

2:30 - 3:00 Coffee Break

3:00 - 4:00 Practical Session: RL & Games with OpenSpiel

O
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Reinforcement Learning

Reinforcement Learning:

An Introduction

Sutton & Barto ‘18

http://incompleteideas.net/book/the-book.html

Reinforcement
Learning '

An Introduction
second edition

Richard S. Sutton and Andrew G. Barto

Private & Confidential
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http://incompleteideas.net/book/the-book.html
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Workshop Topics: Survey

Unbiased estimator

Importance sampling

Markov decision process

Nash equilibrium or Minimax Theorem

Private & Confidential

o



WorkShOp TOpiCS: Survey Private & Confidential

Unbiased estimator

Importance sampling

Markov decision process

Nash equilibrium or Minimax Theorem

Regret Minimization
o AKA No-regret learning, Hannan/universal consistency

O



WorkShOp TOpiCS: Survey Private & Confidential

Unbiased estimator

Importance sampling

Markov decision process

Nash equilibrium or Minimax Theorem

Regret Minimization
o AKA No-regret learning, Hannan/universal consistency
e Generalized Policy lteration

O



WorkShOp TOpiCS: Survey Private & Confidential

Unbiased estimator

Importance sampling

Markov decision process

Nash equilibrium or Minimax Theorem

Regret Minimization
o AKA No-regret learning, Hannan/universal consistency

Generalized Policy Iteration
e Reinforcement Learning (RL)

O



WorkShOp TOpiCS: Survey Private & Confidential

Unbiased estimator

Importance sampling

Markov decision process

Nash equilibrium or Minimax Theorem

Regret Minimization
o AKA No-regret learning, Hannan/universal consistency

Generalized Policy Iteration
e Reinforcement Learning (RL)
e Difference between value-based RL and policy gradients

O



WorkShOp TOpiCS: Survey Private & Confidential

Unbiased estimator

Importance sampling

Markov decision process

Nash equilibrium or Minimax Theorem

Regret Minimization
o AKA No-regret learning, Hannan/universal consistency
Generalized Policy Iteration
Reinforcement Learning (RL)
Difference between value-based RL and policy gradients

Monte Carlo tree search or minimax search

O



WorkShOp TOpiCS: Survey Private & Confidential

Unbiased estimator

Importance sampling

Markov decision process

Nash equilibrium or Minimax Theorem

Regret Minimization

o AKA No-regret learning, Hannan/universal consistency
Generalized Policy Iteration
Reinforcement Learning (RL)
Difference between value-based RL and policy gradients
Monte Carlo tree search or minimax search

Function approximation or neural network

O



WorkShOp TOpiCS: Survey Private & Confidential

Unbiased estimator

Importance sampling

Markov decision process

Nash equilibrium or Minimax Theorem

Regret Minimization

o AKA No-regret learning, Hannan/universal consistency
Generalized Policy Iteration
Reinforcement Learning (RL)
Difference between value-based RL and policy gradients
Monte Carlo tree search or minimax search

Function approximation or neural network
Proof by induction @



PartiCipate: Welcome Game & ResearCh TOpiCS Private & Confidential

1. Let's play a multiplayer game!
2. Research topic / interest survey

First rule: no Internet (wifi / cell phone / laptop etc.) for the next 5 min!

O



Game: Guess 2/3 Of the Average Private & Confidential

1. Write down a real number between O and 100.
2. Winner: closest value to %5 of the mean of all values

Ok to take a minute or so to decide... but no talking!

O



ResearCh TOpiC / Interest Survey Private & Confidential

1. Tell me what you do or are generally interested in.
2. ...inno more than 10 words!

O



Motivations: Research in Multiagent RL

» Approximate
GEJ’E Solution
K g Methods

o

» Tabular
C=U E Solution
UE) g Methods

o

Single Agent

b DeepMind

Approximate
Solution
Methods

Tabular
Solution
Methods

Multiple (e.g. 2) Agents
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b DeepMind

Motivations: Research in Multiagent RL

Sutton & Barto ‘98, ‘18

Large
Problems

Small
Problems

Ve

=

Approximate
Solution
Methods

Tabular
Solution
Methods

~

/

Single Agent

Approximate
Solution
Methods

Tabular
Solution
Methods

Multiple (e.g. 2) Agents
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Motivations: Research in Multiagent RL
First era of multiagent RL

% Approximate Approximate
S E Solution Solution
o g Methods Methods
o
%) Tabular Tabular
e E Solution Solution
5 g Methods __——" Methods
o

Single Agent Multiple (e.g. 2) Agents

Q DeepMind
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Motivations: Research in Multiagent RL
Multiagent Deep RL era (‘16 - now)

g Approximate Approximate
Q Solution Solution
o0
® 3 Methods T Methods

o

) Tabular Tabular
T E Solution Solution
5 g Methods Methods

o

Single Agent Multiple (e.g. 2) Agents

b DeepMind
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Motivations: Research in Multiagent RL

Talk focus

» Approximate Approximate
oy E Solution Solution
« g Methods Methods

o

) Tabular Tabular
© E Solution Solution
5 g Methods Methods

o

Single Agent Multiple (e.g. 2) Agents

b DeepMind
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Motivations: Research in Multiagent RL
My 10-year mission

» Approximate Approximate
oy E Solution Solution
« g Methods Methods
o
) Tabular Tabular
© E Solution Solution
5 g Methods Methods
o
Single Agent Multiple (e.g. Z) Agents

Q DeepMind



Games community

b DeepMind

Biscuits vs Cookies

Brief note on Terminology

Player

Strategy

Best Response
Utility

State

Move

Reinforcement learning
community

Agent

Policy

Greedy Policy
Reward
(Information) State
Action

O



DeepMind

2 Intro to MARL
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Section Plan

a. What is Multiagent Reinforcement Learning (MARL)?
b. Foundations & Background
c. Basic Formalisms & Algorithms

d. (Quick intro to) Advanced Topic
e. General MARL wrap-up

'Q Google DeepMind General Artificial Intelligence “’
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Multiagent Reinforcement Learning

Pommerman

pommerman . com Laser Tag

b Google DeepMind General Artificial Intelligence ,



http://www.youtube.com/watch?v=Z5cpIG3GsLw

Multiagent Reinforcement Learning

THE ULTIMATE GO CHALLENGE
GAME 4 OF 5

13 MARCH 2016

0-@¢

AlphaGo Lee Sedol W

Won 3 of 5 Won 10of §

RESULT NUMBER TIME
OF MOVES BLACK

DO .-
59m 6s

@ Goog[e DeepMind General Artificial Intelligence b’



Traditional (Single-Agent) RL
. L
Environment

<. Re War
Interpreter
% -

Agent

Source: Wikipedia

b Google DeepMind

Action
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Multiagent Reinforcement Learning

b Google DeepMind

01

02

)

O

E=

—l;:l Agent 1

a4

Agent 2

as

Source: Nowe, Vrancx & De Hauwere 2012

joint action Et

>

(—|Zm§ZO:U—<Zm]

joint state S¢

reward Ft

O



Important Historical Note

If multi-agent learning is the answer,
what is the question?
Yoav Shoham, Rob Powers, and Trond Grenager

Stanford University
{shoham, powers,grenager}@cs.stanford.edu

February 15, 2006

O

‘? ) DeepMind Presentation Title — SPEAKER



Artificial Intelligence, Volume 171, Issue 7

Foundations of multi-agent learning: Introduction to the special issue
Rakesh V. Vohra, Michael P. Wellman
Pages 363-364

An economist's perspective on multi-agent learning
Drew Fudenberg, David K. Levine
Pages 378-381

Perspectives on multiagent learning
Tuomas Sandholm
Pages 382-391

b DeepMind @

Presentation Title — SPEAKER



Artificial Intelligence, Volume 171, Issue 7

Agendas for multi-agent learning
Geoffrey ). Gordon
Pages 392-401

Multiagent learning is not the answer. It is the question
Peter Stone

Pages 402-405

What evolutionary game theory tells us about multiagent learning
Karl Tuyls, Simon Parsons

Pages 406-416

b DeepMind a

Presentation Title — SPEAKER



Artificial Intelligence, Volume 171, Issue 7

Multi-agent learning and the descriptive value of simple models
Ido Erev, Alvin E. Roth

Pages 423-428

The possible and the impossible in multi-agent learning
H. Peyton Young

Pages 429-433

No regrets about no-regret
Yu-Han Chang
Pages 434-439

Q DeepMind

O

Presentation Title — SPEAKER



Artificial Intelligence, Volume 171, Issue 7

A hierarchy of prescriptive goals for multiagent learning

Martin Zinkevich, Amy Greenwald, Michael L. Littman
Pages 440-447

Learning equilibrium as a generalization of learning to optimize
Dov Monderer, Moshe Tennenholtz

Pages 448-452

b DeepMind @

Presentation Title — SPEAKER



Some Specific Axes of MARL

Centralized:
e One brain / algorithm deployed across many agents
Decentralized:

e All agents learn individually

e Communication limitations defined by environment

b Google DeepMind General Artificial Intelligence b’



Some Specific Axes of MARL

Prescriptive:
e Suggests how agents should behave
Descriptive:

e Forecast how agent will behave

b Google DeepMind General Artificial Intelligence b’



Some Specific Axes of MARL

Cooperative: Agents cooperate to achieve a goal
Competitive: Agents compete against each other
Neither: Agents maximize their utility which may

require cooperating and/or competing

b Google DeepMind General Artificial Intelligence b’



Our Focus

1. Centralized training for decentralized execution
(very common)
2. Mostly prescriptive

3. Mostly competitive; sprinkle of cooperative and neither

'Q Google DeepMind General Artificial Intelligence b’
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Shoham & Leyton-Brown ‘09

Main Page Table of Contents Instructional Resources Errata eBook Download™"’

Multiagent Systems

Algorithmic, Game-Theoretic, and Logical Foundations

Yoav Shoham

Stanford University

Kevin Leyton-Brown
University of British Columbia

Mu'ltiageqt Systems

YOAV SHOHAM
KEVIN LEYTON-BROWN Cambridge University Press, 2009

Order online: amazoncom

masfoundations.org

b Google DeepMind General Artificial Intelligence b’


http://masfoundations.org/

b DeepMind

Foundations of (MA)RL

o 2 Reinforcement Multiagent
o0 Learning Reinforcement
© .
a9 Learning
o
\
n
T E Approximate Dynamic Game Theory
5 g Programming
o
J

Single Agent

Multiple (e.g. 2) Agents

O



b DeepMind

Large
Problems

Small
Problems

Foundations of Multiagent RL

Reinforcement Multiagent
Learning Reinforcement
Learning
Approximate Dynamic Game Theory

Programming

Single Agent Multiple (e.g. 2) Agents

O



Normal-form “One-Shot” Games

e Setofplayers § € N = {1,2,-” ,n}

b Google DeepMind
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Normal-form “One-Shot” Games

e Setof players 7 EN:{1,2,°" ,n}
e Each player has set of actions Az “ {al, as, ...
e Setofjointactions A4 = Al X .AQ X e X .An

Q Google DeepMind
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Normal-form “One-Shot” Games

e Setof players 7 EN:{l,Q,--- ,n}

e Each player has set of actions Az - {al, as, ... }
e Setofjointactions A4 = Al X .AQ X oo X .An
e A utility function U : NxA-=U C R

b Google DeepMind General Artificial Intelligence b,



Example: (Bi-)Matrix Games

column player

A B
a 0,0 1,1

row player b 11 0.0

b Google DeepMind
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Example: (Bi-)Matrix Games

_ column player
actions

O
a 0,0 1, -1
row player b 4 0.0

b Google DeepMind

o



Example: (Bi-)Matrix Games

column player

A B

row player

utility to row player

b Google DeepMind
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Example: (Bi-)Matrix Games

column player

A B

row player

utility to row player

b Google DeepMind

utility to column player
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Example: (Bi-)Matrix Games

column player

A B

row player

utility to row player

b Google DeepMind

utility to column player

for joint action (a,B)

O



Normal-form “One-Shot” Games

e Setofplayers § € N = {1,2,--- ,n}

e Each player has set of actions Az & {al, as, ...

}

e Setofjointactions A4 = Al X .AQ X e X .An

e A utility function U : NxA-=U C R

Each player: 77; € A(AZ), maximize

Q Google DeepMind

<~ TT
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Normal-form “One-Shot” Games

e Setof players 7 EN:{l,Q,--- ,n}

e Each player has set of actions Az “ {al, as, ... }
e Setofjointactions A4 = Al X .AQ X oo X .An
e A utility function U : NxA-=U C R

Each player: 7T & A(A@), maximaize 43a@[ui(a)]

Problem! This is a joint policy //

b Google DeepMind General Artificial Intelligence b,



Best Response

Suppose we are player 73 and we fix policies of other players

b Google DeepMind General Artificial Intelligence b,



Best Response

Suppose we are player 4 and we fix policies of other players ( —i = N — {i})

b Google DeepMind General Artificial Intelligence b,



Best Response

Suppose we are player 4 and we fix policies of other players ( —i = N — {i})

T € A(A;), maximize E,,|u;(a)]

Q Google DeepMind

o



Best Response

Suppose we are player ¢ and we fix policies of other players ( —i = N — {3} )

T € A(A;), maximize E,,|u;(a)]

T € BR(’]T_Z) <~ ”LLf,;(T('i,ﬂ'_i) = maXW;EaN(W;,W_i)[ui(a)]

b Google DeepMind @



Best Response

Suppose we are player ¢, and we fix policies of other players ( —i = N — {3} )

T € A(A;), maximize E,,|u;(a)]

T; € BR(T‘-—Z) <~ u’i(ﬂ-ia 7T—i) — maXW:;Ea,N(W,E,W_i)[ui(a')]

7T isabestresponseto 71 _

b Google DeepMind @



Solving a Matrix Game

column player

A B
a 0,0 1,1

row player b 11 0.0

b Google DeepMind
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Solving a Matrix Game

column player

A B

d 0,0 1, -1

row player b y @

b Google DeepMind

Let's start here

o



Solving a Matrix Game

column player

A B

row player

b Google DeepMind

Both players have incentive to deviate
(assuming the opponent stays fixed)

O



Solving a Matrix Game

column player

A B

d 0,0 1, -1

row player b @ 0.0

b Google DeepMind
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Solving a Matrix Game

column player

A B

row player b 4 \ 0.0

b Google DeepMind

o



Solving a Matrix Game

column player

A B

row player b . 0.0

b Google DeepMind

(a,A) is a fixed point of this process

O



Solving a Matrix Game

column player

A B

(a,A) is a fixed point of this process

row player b . 0.0

m € A(A;), maximize Eq |u;(a)]
Q) Google DeepMing @




Let’s Try Another....

column player

A B

row player

b Google DeepMind
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Let’s Try Another....

column player

A B

row player b _1”-1 ‘ / -1,’_1

b Google DeepMind

O



Nash equilibrium

A Nash equilibrium is a joint policy /[" such that no player has incentive to

deviate unilaterally.

b Google DeepMind General Artificial Intelligence b,



Nash equilibrium: A Solution Concept

A Nash equilibrium is a joint policy 7[ such that no player has incentive to

deviate unilaterally.

Vi € N, T, € BR(?T_Z)

b Google DeepMind

O



Some Facts

e Nash equilibrium always exists in finite games

e Computing a Nash eq. is PPAD-Complete
o One solution is to focus on tractable subproblems
o Another is to compute approximations

e Assumes players are (unbounded) rational

e Assumes knowledge:
o Utility / value functions

o Rationality assumption is common knowledge

'Q Google DeepMind General Artificial Intelligence b’



Two-Player Zero-Sum Games

Matching Pennies: u1() = —U2(')
column player

A B
a 1, -1 1,1

row player
piay b 1,1 1, -1

b Google DeepMind

o



Two-Player Zero-Sum Games

Matching Pennies: u1() = —U2(')
column player

A B
a 1, -1 1,1

row player
play b 1,1 1, -1

b Google DeepMind

max V

o



Two-Player Zero-Sum Games

Matching Pennies: u1() = —U2(')
column player

A B m(a) —mw(b) >V

a 1,-1 -1,1

max V

row player
play b 1,1 1, -1

b Google DeepMind

(vs. A)

o



Two-Player Zero-Sum Games

Matching Pennies: u1() = —U2(')

column player mMax V
A B m(a) —mw(b) >V
a 1,-1 1,1 —7(a)+m(b) >V

row player
play b 1,1 1, -1

b Google DeepMind

o



Two-Player Zero-Sum Games

Matching Pennies: u1() = —U2(')

column player mMax V
A B m(a) —mw(b) >V
a 1,-1 1,1 —m(a) +m(b) >V
row player
ot w(e) () =

b Google DeepMind

o



Best Response Condition

For any (possibly stochastic) joint policy 7T _;

There exists a deterministic best response:

7'(',? c BR(m_;)

b Google DeepMind General Artificial Intelligence b,



Best Response Condition

For any (possibly stochastic) joint policy 7T _; ,

There exists a deterministic best response:
. € BR(m_;)

Proof: Assume otherwise. The values of each deterministic policy (action) must

be the same, by def. of BR. Then we can put full weight on any of them.

b Google DeepMind General Artificial Intelligence b,



Two-Player Zero-Sum Games

Matching Pennies: ui () = —us(+)

column player mMax V
A B m(a) —mw(b) >V
a 1,-1 1,1 —m(a) +m(b) >V
row player
ot w(e) () =

b Google DeepMind

o



This is a Linear Program!

e Solvable in polynomial time (!)
o Easy to apply off-the-shelf solvers
e Will find one solution

e Matching Pennies: 7(a) = m(b) =

b Google DeepMind General Artificial Intelligence b,



Minimax

Max-min: P1 looks for a7ry such that

v1 = max min w1 (7, m2)
T 1o

Min-max: P1 looks for a 7T1 such that

v1 = min max w1 (7, m2)
Y] ™1

In two-player, zero-sum these are the same!

John von Neumann 1928 ---> The Minimax Theorem

o

b DeepMind Multi-Agent and Al



Consequences of Minimax

The optima T = (WT,T(';)

b DeepMind

These exist! (They sometimes might be stochastic.)
Called a minimax-optimal joint policy. Also, a Nash equilibrium.

They are interchangeable:

/ / /
Vﬂ'*, ™ = (7Tik, 71'5< ), (’7‘(‘1< , 7T>2k) also minimax-optimal
Each policy is a best response to the other.

O

Multi-Agent and Al



Normal Form Games: Algorithms

e Fictitious Play:
e Start with an arbitrary policy per

1 2
0 player (', m,),

R',R?

o

b DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e Fictitious Play:

Ve

Vi

b DeepMind

0

1 1 1
BR', BR', BR',

1

R',R?

Start with an arbitrary policy per

player (m' 1),

o Then, play best response
against a uniform distribution
over the past policy of the

1 2
opponent (BR' BR- ).

O

Multi-Agent and Al



Normal Form Games: Algorithms

e Fictitious Play:

”l 2 e Start with an arbitrary policy per
I I
m', BR', BR', BR, player ('),
1, ”20 I | o Then, play best response
aR? against a uniform distribution
5
21 R R2 over the past policy of the
5 BR ' 1 2
2 opponent (BR' BR? ).
BR2, | ———

o

b DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, O, 0), (1, O, 0O)

o

b DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, O, 0), (1, O, 0)
e |teration 1:
R P o BR',BR* =P, P
R|o 1 o (%, %, 0), (A, ', O)
P|-1 0

o

b DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e Fictitious Play: e Start with (R, P, S)= (1, O, 0), (1, O, 0O)

e Iteration 1:

R P P o BIQ11,BIQ21 =P, P
o (%, a, 0), (A, A, O)
e |[teration 2:
1 2 _
o BR 2,BR , = P, P
o (Y%, %5, 0), (4, %, O)

o

Multi-Agent and Al

b DeepMind



Normal Form Games: Algorithms

e Fictitious Play:

b DeepMind

R P P S
R10 1 1 -1
P -1 0 0 1
P -1 0 0 1
S 1 -1 -1 0

Start with (R, P, S)= (1, O, 0), (1, O, O)

lteration 1:

O

BR',BR? = P, P

o (%, a, 0), (A, A, O)
lteration 2:

1 2 _
o BRZ,BRZ—P,P
o (Y%, %5, 0), (4, %, O)
lteration 3:

1 2 _
o BR3,BR3—S,S

©)

(1/4,1/2,1/4), (1/4,1/2,1/4)

O

Multi-Agent and Al



Normal Form Games: Algorithms

e Fictitious Play:

b DeepMind

R P P S S
R{10 1 1 -1 A1
P -1 0 0 1 1
P -1 0 0 1 1
S 1 -1 1 0 O
S 1 -1 1 0 O

Start with (R, P, S)= (1, O, 0), (1, O, O)

lteration 1:

o BR',BR* =P, P

o (%, a, 0), (A, A, O)
lteration 2:
1 2 _
o BRZ,BRZ—P,P
o (Y%, %5, 0), (4, %, O)
lteration 3:
1 2 _
o BR3,BR3—S,S

©)

(1/4,1/2,1/4), (1/4,1/2,1/4)

O

Multi-Agent and Al



Normal Form Games: Algorithms

e double oracle [HB McMahan 2003]:

1

m
N e Start with an arbitrary policy per
I I
9’y Q% 9% player (' ,m? ),
”10 BR11 BR12 BR13 o Compute (p",q") by solving
pzo ”20 the game at iteration n
2 2 o Then, best response against
Tr22 P BRY| = f -
v BR? R' R2 (p",q") and get a new best
-2 1. response (BR' BR' ).
BRZ,
b DeepMind

Multi-Agent and Al



Normal Form Games: Algorithms

e Start with (R, P, S)= (1, O, 0), (1, O, O)
e double oracle:

o

b DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e Start with (R, P, S)= (1, O, 0), (1, O, O)
e double oracle:
e |[teration 1:

o BR'.BR? =P, P

R P
o Solve the game : (O, 1, 0), (O, 1,
R|o0o 1
0)
P -1 0

O

b DeepMind Multi-Agent and Al



Normal Form Games: Algorithms

e double oracle:

b DeepMind

Start with (R, P, S)= (1, O, 0O), (1, O, O)

Iteration 1:

o BR'.BR? =P, P

o Solve the game : (O, 1, 0), (O, 1,
0)

Iteration 2:

o BR,,BR%L =S,S

o (%A, ', 5, (Y5, 5, 'A)

O

Multi-Agent and Al



Cooperative Games

wi(+) = u ()

column player

A B C
a 1,1 0,0 0,0
row player b | o0 2 2 0.0
c| 0,0 0,0 5,5

b Google DeepMind

O



Cooperative Games

wi(+) = u ()

column player

a @ 0,0
row player 5 | o0 @

c | 00 0,0

b Google DeepMind

C

0,0

0,0

€

These are all Nash equilibria!

O



General-Sum Games

No constraints on utilities!

column player

A B
a 3,2 0,0

row player
play b 0,0 2.3

Q Google DeepMind

O



Sequential Setting: Extensive-Form Games

What about sequential games...?

b Google DeepMind

O



Perfect Information Games

N

X X

X
N

(6] O OX X X X X
O

W\

X

X X (0] [¢]
(¢]

NN INNINNN NN NN N

b DeepMind



(Finite) Perfect Information Games: Model

_ ] _ Simultaneous move node (many players
e Start with an episodic MDP play simultaneously)

e Add a player identity function:
7(s) € N UAs

e Define rewards per player:

ri(s,a,s’) fori e N

e (Similarly for returns: Gt,z’ is the return to player i from S¢ )

O

b DeepMind
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b DeepMind

Foundations of RL

o & Reinforcement Multiagent
o0 Learning Reinforcement
© 2 .
a9 Learning
o
U) f
s E Approximate Dynamic Game Theory
c/E) -g Programming
o

Single Agent Multiple (e.g. 2) Agents

O



Backward Induction

Solving a turn-taking perfect

information game

'2, 2 -41 4

b Google DeepMind General Artificial Intelligence b,



Backward Induction

Solving a turn-taking perfect

information game

'2, 2 -41 4
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Backward Induction

Solving a turn-taking perfect

information game

'2, 2 -41 4

b Google DeepMind General Artificial Intelligence b,



Backward Induction

Solving a turn-taking perfect

information game

b Google DeepMind General Artificial Intelligence b’



Intro to RL: Tabular Approximate Dyn. Prog.

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 87)

Repeat
A+0
For each s € 8:
v+ V(s)
V(s) « max, Y .., p(s',7|s,a)[r + 7V ()]
A + max(A, v —V(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, 7 = m,, such that
m(s) = argmax, ) . p(s',7|s,a) [7' + 'yV(s’)]

O

b DeepMind Multi-Agent and Al



Turn-Taking 2P Zero-sum Perfect Info. Games

Player to play at s: 7(s)

Reward to playeri: 7°;

Subset of legal actions LrecaLAcTIONS(s)
Often assume episodicand v =1

Values of a state to player i: ‘/Z (S)
|dentities:

Vs,a,s" :r1 = —rg, Vi(s) = —Vs(s)
o
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2P Zero-Sum Perfect Info. Value Iteration

Value iteration

Initialize array V; arbitrarily (e.g., V/(s) =0 for all s € 87)
Repeat
A+0
For each s € 8:
v V(s)
Vi(s) « max, X, p(s', 1], @) [ + YV(s")]
A + max(A, [v — Vi(s)[)
until A < 6 (a small positive number)

Let i = t(s)

i =tfs)
Output a deterministic policy, © =~ m,, such that;/
m(s) = argmax, 3, . (s, 7|5, @) [1; + YV (s")]

O
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Minimax

A.K.A. Alpha-Beta, Backward Induction, Retrograde Analysis, etc...

Start from search state S, o
Compute a depth-limited approximation: L = | | ha L
u;(s) if s is terminal, £ sy s \ I
Via(s) =4 hi(s) if d = 0, P e el zpele
ZS/ p(s,a, S')Vz‘,d_1(8’) otherwise. x'l . l ' l
---> Minimax Search e ofrs okl

O
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Two-Player Zero-Sum Policy lteration

e Analogous to adaptation of value iteration e
e Foundation of AlphaGo, AlphaGo Zero, AlphaZero 3%15 L’%:
o Better policy improvement via MCTS | |
o Deep network func. approximation protﬂst\,/iﬁﬁes Evalyation

m Policy prior cuts down breadth

m Value network cuts the depth

b DeepMind Multi-Agent and Al



2P Zero-Sum Games with Simultaneous Moves

Min
3
Maz 0.5 X\
2|0 011
[ 3|4 \ 1 (0
Y V¥
2 3 4 0

Image from Bozansky et al. 2016

o
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https://www.sciencedirect.com/science/article/abs/pii/S0004370216300285

Markov Games

“Markov Soccer”

(2)I Defensive Offensive
LA .
! 2 w/bal] Avoid  Advance
A - @ 4) ;0T é - ®. opponent to goal
O ; [ srsHall Defend Intercept
¢ B o] ]N { goal  the ball
Figure 3. Left: Tllustration of the soccer game. Right: Strategies of

Figure 2: An initial board (left) and a situation requiring a probabilistic choice for A (right). the hand-crafted rule-based agent.

Littman ‘94 He et al. ‘16

Also: Lagoudakis & Parr ‘02, Uther & Veloso ‘03, Collins ‘07

o
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Value Iteration for Zero-Sum Markov Games

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 87)

V(s)  maxgy o ptssrisrarr—+—¥{sht
A +— max(A,|v —V(s)|)
until A < 6 (a small positive number)

Output a detesministie policy, m ~ m,, sueh+that computed above
/ /

By, ? ’

Value iteration

Repeat
A0 .
Fo;ach s€S8: min max anw(s),s’ [Tl (37 a, S,) + fyvl (S/)]
v+ V(s) m2(s) m1(s)

b DeepMind
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First MARL Algorithm: Minimax-Q (Litman ‘04)

1. Start with arbitrary joint value functions Q(S, a, 0)

my action opponent action

o

b DeepMind Multi-Agent and Al



First MARL Algorithm: Minimax-Q (Litman ‘04)

1. Start with arbitrary joint value functions Q(S, a, 0)

3
Max | 0.5
j my action opponent action
Y

Induces a matrix of values

o
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First MARL Algorithm: Minimax-Q (Litman ‘04)

1. Start with arbitrary joint value functions Q(S, a, 0)

2. Define policy 7T as in value iteration (by solving an LP)

o
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First MARL Algorithm: Minimax-Q (Litman ‘04)

b DeepMind

Start with arbitrary joint value functions Q(S, a, 0)
Define policy 7T as in value iteration (by solving an LP)

Generate trajectories of tuple (3, a, o, 3’) using
behavior policy 7’ = eUNIF(A) + (1 — e)

O
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First MARL Algorithm: Minimax-Q (Litman ‘04)

1. Start with arbitrary joint value functions Q(S, a, 0)
2. Define policy 7T as in value iteration (by solving an LP)
3. Generate trajectories of tuple (3, a, o, 3’) using
behavior policy 7’ = eUNIF(A) + (1 — e)
4. Update ¢(s,a,0) = (1— a)q(s,a,o0)+ a(r(s,a,o,s)+vyv(s))

o
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First Era of MARL

Follow-ups to Minimax Q:

e Friend-or-Foe Q-Learning (Littman ‘01)

e Correlated Q-learning (Greenwald & Hall ‘03)
e Nash Q-learning (Hu & Wellman ‘03)

e Coco-Q (Sodomka et al. “13)

Function approximation:

e LSPI for Markov Games (Lagoudakis & Parr ‘02)

6 DeepMind

O
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First Era of MARL

Nash Convergence of Gradient Dynamics in General-Sum Games

Satinder Singh Michael Kearns Yishay Mansour
AT&T Labs AT&T Labs Tel Aviv University
Florham Park, NJ 07932 Florham Park, NJ 07932 Tel Aviv, Israel
baveja@research.att.com mkearns@research.att.com mansour @mat h.tau.ac.il

Singh, Kearns & Mansour ‘03, Infinitesimal Gradient Ascent (IGA)

O
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https://arxiv.org/abs/1301.3892

First Era of MARL

a)

values.

'b DeepMind
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Figure 1: The general form of the dynamics: a) when U
has imaginary eigenvalues and b) when U has real eigen-

Image from Singh, Kearns, & Mansour ‘03

Formalize optimization as a

dynamical system:

policy gradients

Analyze using well-established

techniques

O
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First Era of MARL

— Evolutionary Game Theory: replicator dynamics

i(a) = mi(a) |u(a, m) — a(my)]

/

time derivative

O
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First Era of MARL

— Evolutionary Game Theory: replicator dynamics

i(a) = mi(a) |u(a, m) — a(my)]

/ \

time derivative utility of action a against
the joint policy / population
of other players

O

b DeepMind Multi-Agent and Al



First Era of MARL

— Evolutionary Game Theory: replicator dynamics

i(a) = mi(a) |u(a, m) — a(my)]

/ \

time derivative utility of action a against Expected / average utility
the joint policy / population of the joint policy /
of other players population

O
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First Era of MARL

'b DeepMind

- i — o/ VOR ML O S Seres st el R VGt — %= N
St i itk L g &&2= 20 ///‘/"“\\“:\
0'75/////////1 0'75l\\\\ :: 0.751///"“‘::,\
N R s g A0 A L I O Y B A AR RN
sl XSS et T T T el T
VS]] ' E SR I VY
I LR o0 A A ¥ I | S R & O T T |
= C g gl Y [ ] e ' NN /
VAt Al L] | it ata g s SN \\\\""'/'//
R Tl P =P ) /o — W T N N~ e/
c0 0.25 (;.5 0.75 1 c0 0.25 0.5 0.75 1 00 0.25 %5 0.75 1

1 x1 1

Figure 4: The replicator dynamics, plotted in the unit simplex, for the prisoner’s dilemma
(left), the stag hunt (center), and matching pennies (right).

Bloembergen et al. 2015

O
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https://www.jair.org/index.php/jair/article/view/10952

First Era of MARL

WoLF: Win or Learn Fast. (Bowling & Veloso ‘01).
|GA is rational but not convergent!

e Rational: opponents converge to a fixed joint policy
— learning agent converges to a best response of joint policy

e (Convergent: learner necessarily converges to a fixed policy

Use specific variable learning rate to ensure convergence (in 2x2 games)

O
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First Era of MARL

Follow-ups to policy gradient and replicator dynamics:

6 DeepMind

WoLF-IGA, WoLF-PHC

WoLF-GIGA (Bowling ‘05)

Weighted Policy Learner (Abdallah & Lesser ‘08)

Infinitesimal Q-learning (Wunder et al. “10)

Frequency-Adjusted Q-Learning (Kaisers et al. ‘10, Bloembergen et al. “11)
Policy Gradient Ascent with Policy Prediction (Zhang & Lesser ‘10)

Evolutionary Dynamics of Multiagent Learning (Bloembergen et al. ‘15)

O

Multi-Agent and Al



Why call it “the first era?

O
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Why call it “the first era?

Scalability was a major problem.

O
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Second Era: Deep Learning meets Multiagent RL

ﬂvironm ent

_<‘ R e w ar
Interpreter
% \G(I:'?J

ion

Act

Agent

Source: wikipedia.org @

Source: spectrum.ieee.org
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Deep Q-Networks (DQN) Mnin et al. 2015

Atari Emulator

"Human-level control through deep reinforcement learning”

e Represent the action value (Q) function using a /

convolutional neural network, {pixels, reward } {action}

e Train using end-to-end Q-learning.

e Can we do this in a stable way?

O
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Independent Q-Learning Approaches

Independent Q-learning [Tan, 1993]

Qz,a) — Q(z,a) + B(r + 7V (y) — Q(z, a))

Viz) =

max Q(z,b)

bEactions

prey

hunter

N-of-prey/N-of-hunters || 1/1 | 1/2 |

— Right player‘

Left player

Random hunters

123.08 | 56.47

[
n

Learning hunters

2532 | 12.21

Table 1: Average Number of Steps to Capture a Prey

b DeepMind

i
5
{
(.\5

Maximum Q-value
° -
& >
-

°
°

!
e
o

Independent Deep Q-Networks [Tampuu et al., 2015]

Convolution Convolution Fully connected Fully connected
v v v -

Evolution of Q-value

(o]

60 80 100 120
Number of frames played



Learning to Communicate

Agent 2

Agent 1

6 DeepMind

t+1

o N o

* Action

Select

\ 4

Action
Select

2
‘] | S

Environment

(a) RIAL - RL based communication

Agent 2

Agent 1

Ay

Uiy

Action
Select

1
LD { C-Net ]
2
1" ot-|~l

Environment

(b) DIAL - Differentiable communication

Foerster et al. ‘16

O
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Learning to Communicate

Module for agent 7

i+1
hj

=

2" communication step

CommNet model

{0,1,..., G_]}

tanh

Z X

fi
1

Ct| | H

3 7

mean

Jr@

1
r 1
¢ ki

b DeepMind

i1

Sukhbaatar et al. ‘16

{s1,--,8s}

O
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Cooperative Multiagent Tasks

................................................

BN A
" / s \\
e R \ X :
A ‘B \ :
T = O(s,, 1) =f(m, 1) & f(m, 1)
A ¥ 4'—’7,‘~ :
7’

— 05, 2)= f(m, 2) © f(m, 2)

S ? ;

: ] shs A &

. = - O(s, 3)=f(m, 3) ° (., 3)
3 ’ : ® f( D, 3)

Foerster et al. ‘1

Episodic Exploration for Deep Deterministic Policies:
An Application to StarCraft Micromanagement Tasks

Nicolas Usunier*, Gabriel Synnaeve*, Zeming Lin, Soumith Chintala
Facebook AI Research
usunier,gab,zlin,soumith@fb.com

November 29, 2016
6 DeepMind

- =
Uf0 Attention Neron RP Bidiections RNN il Policy Action

Value Function ‘" Agent
11

(a) Multiagent policy networks (b) Multiagent Q networks

BIC-Net (Peng et al.’17) @

Multi-Agent and Al



Sequential Social Dilemmas

https://www.youtube.com/watch?v=0kalgz6 AvwE

Leibo et al. ‘17

b DeepMind

O
)
@+ 4+
®+ 'k +1-2
®+ * +1-2 Orange Misses: +1
@+ * +1 Green Misses: +1 -2
(a) Coins (b) PPD

Lerer & Peyskavich ‘18

O


http://www.youtube.com/watch?v=0kaIqz6AvwE
https://www.youtube.com/watch?v=0kaIqz6AvwE

Centralized Critic Decentralized Actor Approaches

e Idea: reduce nonstationarity & credit assignment issues using a central critic
e Examples: MADDPG [Lowe et al., 2017] & COMA [Foerster et al., 2017]

e Apply to both cooperative and competitive games

¢ Centralized critic trained to minimize loss:
at Critic a2 L(0;) = Exa,r,x [(QF (x,01,...,aN) — y)z],
A y:ri—I—'yQZr’(x’,a'l,...,a},)|a§:"3(0j)
Actor 1 Actor 2 Decentralized actors trained via policy gradient-

T l l T Vo,J(0;) = Esnapm a,~n. [V, logmi(ai|0:) Q7 (X, a1,
ot al  sjir a? o? Z_/
Actor I

Environment Critic <€
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'5 AlphaGo
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AlphaGo vs. Lee Sedol

Lee Sedol (9p): winner of 18 world titles
Match was played in Seoul, March 2016

AlphaGo won the match 4-1

b DeepMind Multi-Agent and Al






AlphaZero: One Algorithm, Three Games




3D Worlds

Bansal et al. ‘18

o
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https://arxiv.org/abs/1710.03748

Meta-Learning in RoboSumo

Spider

RN

Al-Shedivat et al. ‘17

Opponent

Tatami

o
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https://arxiv.org/abs/1710.03641

Emergent Coordination Through Competition

Figure 1: Top-down view with individual camera views of 2v2 multi-agent soccer environment.

Liuetal.'19 and http:/qit.io/dm_soccer

O
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https://arxiv.org/abs/1902.07151
http://git.io/dm_soccer

Capture-the-Flag (Jaderberg et al. “19)

Agent observation raw pixels

Slow RNN

5 .
T BB Outdoor map overview "

https://deepmind.com/blog/capture-the-flag-science/

b DeepMind


http://www.youtube.com/watch?v=OjVxXyp7Bxw
https://deepmind.com/blog/capture-the-flag-science/

Dota 2: OpenAl Five

f'_‘-,' OpenAl

https://openai.com/blog/openai-five-finals

O
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https://openai.com/blog/openai-five-finals/

AlphaStar (Vinyals et al. *19)

l AlphaStar

-~

»
%
6L
L Considered Location

Neural Network Activations ’,f"*”""’; o é‘m’ “'. %

Considered Build/Train

https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-11-using-multi-agent-reinforcement-learning

O
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https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning

Deep Multiagent RL Survey

A Survey and Critique of Multiagent Deep Reinforcement Learning™

Pablo Hernandez-Leal, Bilal Kartal and Matthew E. Taylor
{pablo.hernandez,bilal.kartal,matthew.taylor}@borealisai.com

Borealis Al

Edmonton, Canada

https://arxiv.org/abs/1810.05587

O
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https://arxiv.org/abs/1810.05587

2d

DeepMind

Quick
Sampler:
Partial
Observability

o



Foundations of Multiagent RL

' )
o g Reinforcement Multiagent
% % Learning Reinforcement
— 9 Learning
o
) M
. /
g © | Approximate Dynamic Game Theory
) 'g Programming
o
Single Agent Multiple (e.g. 2) Agents

b DeepMind



Independent Deep Q-networks  (see Lanctot et al. “17)

https.//www.youtube.com/watch?v=8vX https.//www.youtube.com/watch?v=|OjwOkCM_i8

Independent learners who learned together Independent learners who learned using the same
algorithm, same architecture, same hyperparameters,
different seed

b DeepMind


https://arxiv.org/abs/1711.00832
http://www.youtube.com/watch?v=jOjwOkCM_i8
http://www.youtube.com/watch?v=8vXpdHuoQH8
https://www.youtube.com/watch?v=8vXpdHuoQH8
https://www.youtube.com/watch?v=jOjwOkCM_i8

Independent Deep Q-networks  (see Lanctot et al. “17)

https:/ www.youtube.com/watch?v=/5cplG3GsLw https:/www.youtube.com/watch?v=zilUohXvGK

Independent learners who learned together Independent learners who learned using the same
algorithm, same architecture, same hyperparameters,
different seed

b DeepMind


https://arxiv.org/abs/1711.00832
http://www.youtube.com/watch?v=zilU0hXvGK4
http://www.youtube.com/watch?v=Z5cpIG3GsLw
https://www.youtube.com/watch?v=Z5cpIG3GsLw
https://www.youtube.com/watch?v=zilU0hXvGK4

Fictitious Self-Play Heinrich et al. 15, Heinrich & Silver 2016]

e Idea: Fictitious self-play (FSP) + reinforcement learning

e Update rule in sequential setting equivalent to standard fictitious play (matrix game)
e Approximate NE via two neural networks:

1.

Best response net (BR):

(@)
(@)

Estimate a best response
Trained via RL

2. Average policy net (AVG):

b DeepMind

O
(@)

Estimate the time-average policy
Trained via supervised learning

Policy
Mixing
Parameter

Circular
Buffer

Reservoir
Buffer

O
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Neural Fictitious Self-Play [Heinrich & Silver 2016]

e |educ Hold’em poker experiments:

10 — ——r—— ——— —

"Closeness” to Nash :

2
:—a‘
s
S
a
<
4]
0.1
NESP ——
DQN, average strategy ——
DQN, greedy strategy ——
0.01 ' L | ' I Ll ' L |
1000 10000 100000 le+06
Iterations

e st scalable end-to-end approach to learn approximate Nash equilibria w/o prior domain knowledge
o Competitive with superhuman computer poker programs when it was released @

b DeepMind Multi-Agent and Al



Policy-Space Response Oracles wanciot et al. 17)

Random )QN #1 DQN #2

Random 0.5 0.45 0.4

PSRO Meta Agent l DQN #1 0.6 0.55 0.45

DQN #2 0.7 0.6 0.56

6 Google DeepMind General Artificial Intelligence b’


https://arxiv.org/abs/1711.00832

Quantifying “Joint Policy Correlation”

In RL:
e Each player uses optimizes independently
e After many steps, joint policy (r, , ., ) co-learned for players 1 & 2

Computing JPC: starts separate instances of the same experiment, with

o Same hyper-parameter values
o Differ only by seed (!)

e Reload all 25 combinations and play =, with ) for instances i, |

O
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Joint Policy Correlation in Independent RL

INRL in small2 (first) map INRL in small4 map

o 57 &5 U
icezale 20

Player #1
2

1 0
.i'ff
p o
=]
w
w

18

- --- ) -
0 1 2 3 4

Player #2

Player #1
2
~

8
I‘

Multi-Agent and Al
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JPC Results - Laser Tag

b DeepMind

Game Diag Off Diag | Exp. Loss
LT small2 | 30.44 20.03 34.2 %
LT small3 | 23.06 9.06 62.5 %
LT small4 | 20.15 5.71 71.7 %
Gathering | 147.34 146.89 none

field

Pathfind 108.73 106.32 none
merge

o
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EXpIOItablllty Descent (Lockhart et al. “19)

Imp Info Goofspiel(4d)

Algorithm 2: Exploitability Descent (ED)
input :7% — initial joint policy

1 fort € {1,2,---} do

2 forie{l,---,n}do

3 Compute a best response bt (w' "

4

5

forie {1,--- ,n},s € S;do
Define b’ ; = {b%}
Let q®(s) = VALUESVSBRs(w! " !(s),bt ;)

6
7 mt(s) = GRADASCENT(w! " (s), at, q%(s))
. . . . -~ =— Neural Net ED
e A FP-like algorithm conv. without averaging! 10+ 2 R ?
. . . i XFP -
e Amenable to function approximation 107 "k CO VLI oy v
10° 10* 10° 10° 10° 10°

General Artificial Intelligence b,

b Google DeepMind


https://arxiv.org/abs/1903.05614

Counterfactual Regret Minimization (CFR)

Zinkevich et al. ‘08 .
Original game
) Abstracted
e Algorithm to compute approx T K
Nash eq. In 2P zero-sum games
Custom
. algorithm for
e Hugely successful in Poker Al B Nodl
; g A Nash
e Size traditionally reduced apriori equilrium "o motd
equilibrium
based on expert knowledge
e Key innovation: counterfactual et St o
values: v'ic(ﬂ-7 S, CL) ,Uz_c(ﬂ-’ S) Image form Sandholm ‘10

b Google DeepMind General Artificial Intelligence b,



CFR is policy iteration!

e Policy evaluation is analogous
e Policy improvement: use regret minimization algorithms
o Average strategies converge to Nash in self-play

e Convergence guarantees are on the average policies

b Google DeepMind General Artificial Intelligence b’



DeepStaCk (Moravcik et al. “17)

(b) NN
Action history Ranges Values
Current public state

\ Game tree (c) ’M
7~

Agent's possible actions Sampled poker
situations \\
)
Lookahead tree Y
\ Neural net [see (b)]

i \ Subtree

Figure 2: DeepStack overview. (a) DeepStack re-solves for its action at every public state it is
to act, using a depth limited lookahead where subtree values are computed using a trained deep
neural network (b) trained before play via randomly generated poker situations (c).

O
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https://science.sciencemag.org/content/356/6337/508

(Moravcik et al. ‘17)

BUCKETING

| DeepStack
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https://science.sciencemag.org/content/356/6337/508

Libratus Brown & sandholm “18)

RESEARCH ARTICLE

Superhuman Al for heads-up no-limit poker: Libratus
beats top professionals

Q Google DeepMind


https://science.sciencemag.org/content/359/6374/418

Policy Gradient Algorithms

Parameterized policy 7T@ with parameters @ (e.g. a neural network)
Define a score function J(ﬂ'g) — Up (80) = EW [Go]

Main idea: do gradient ascent on J.

1. REINFORCE (Williams ‘92, see RL book ch. 13) + PG theorem:
you can do this via estimates from sample trajectories.
2. Advantage Actor-Critic (A2C) (Mnih et al “16): you can use deep

networks to estimate the policy and baseline value v(s)

'b Google DeepMind General Artificial Intelligence b’



Regret Policy Gradients (srinivasan et al. ‘18)

Policy gradient is doing a form of CFR minimization!

Several new policy gradient variants inspired connection to regret

a -

a -
14
' NFSP = A2C: i RPG. cem—QPG: ——RM

e NFSP === A2C e== RPG == QPG. = RM

NashConv
~
hConv

Nasl

NASHCONV in 2-player Leduc NASHCONV in 3-player Leduc

)
6 DeepMind
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https://arxiv.org/abs/1810.09026

Hedg|ng PO“Cy GradlentS (Previously “Neural Replicator Dynamics” / NeuRD)

Omidshafiei, Hennes, Morrill et al. ‘19

Replicator Dynamics Time-discretize
Update policy
parameters to Neural Replicator

minimize distance to Dynamics (NeuRD)
time-discretized RD

Parameterized policy

0; =041+ nzveyt—l(Staafﬁ 0)A(s¢,a:; 0, w)

s,a AN J \\ J

Logits, where policy is (J

7 = softmax(y)

Advantage q(s,3)-v(s) =«


https://arxiv.org/abs/1906.00190

NeuRD: Results

Biased Rock-Paper-Scissors Leduc Poker
102 _!I [ | [ | ol [ r 101 __=I [T SN T I T T T O T X 111 IO O A W T 111 B ||||||||g
g 3 : [
> 10 E g < 100 T r
S 100 : :_ 8 3 =
Q g 107 ¢ :
B 107 r S = =
=2 102 3 — PG E ﬁ 10-2 _; — PG ;_
£ — NeuRD 4 S = — NeuRD E
10-3 = [ N B R RN [ N B RN | [ N R R RN [ T B 10-3 S O I I YT I I YT B O NN YT R I A RN AT R B AT
10° 10! 102 10° 10° 10' 10?2 10° 10* 10°

Iteration Iteration
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Shoham & Leyton-Brown ‘09

Main Page Table of Contents Instructional Resources Errata eBook Download™"’

Multiagent Systems

Algorithmic, Game-Theoretic, and Logical Foundations

Yoav Shoham

Stanford University

Kevin Leyton-Brown
University of British Columbia

Mu'ltiageqt Systems

YOAV SHOHAM
KEVIN LEYTON-BROWN Cambridge University Press, 2009

Order online: amazoncom

masfoundations.orqg

b Google DeepMind General Artificial Intelligence b’


http://masfoundations.org/

Surveys and Food for Thought

e If multi-agent learning is the answer, what is the question?

o  Shoham et al. ‘06

o Hernandez-Leal et al. ‘19

e A comprehensive survey of MARL (Busoniu et al. ‘08)
e (Game Theory and Multiagent RL (Now¢ et al. 12)

e Study of Learning in Multiagent Envs (Hernandez-Leal et al. “17)

b Google DeepMind General Artificial Intelligence b’



The Hanabi Challenge

w1

[ v2

Stacks

w4l Y1 R5  B1 R2 BE&]
P2

Deck Discards

B5 B3 B4 B2

Figure 1: Example of a four player Hanabi game from the point of view of player 0. Player 1
acts after player 0 and so on.

Bard et al. ‘19

@ Google DeepMind

Also Competition at IEEE Cog (ieee-cog.org)

General Artificial Intelligence b,


https://arxiv.org/abs/1902.00506
http://ieee-cog.org/

AAAIl 2020 Workshop on RL in Games

AAAIT9-RLG Summary:

e 39 accepted papers
o 4 oral presentations
o 35 posters

e 1 “Mini-Tutorial”

e 3 Invited Talks

e Panel & Discussion

http://aaai-rlg.mlanctot.info/ @

b DeepMind Multi-Agent and Al


http://aaai-rlg.mlanctot.info/

3

DeepMind

Adapting RL
Algorithms to
/ero-Sum
Games

o



Plan: MARL in Zero—sum Games Private & Confidential

1. Worked out examples
a. Adapting Q-learning
b. Counterfactual Regret Minimization

2. Three important sub-topics:
a. Expected values vs. counterfactual values

b. Monte Carlo CFR: sample-based CFR
c. Search in Imperfect Information games

O



3.1a

DeepMind

Tabular
O-learning
Exercise

o



Tabu1ar Q—Learning ExerCise Private & Confidential

Please refer to handout.

e Either on your own or in small groups, try to answer Q1. [5 min]
e Then, now try to answer Q2. [5 min]

Let’'s discuss the answers.

O



Tabular Q-learning Exercise

Private & Confidential

Suppose o = (0.1, Q(s, a) = O for all s,a, and the following episodes are

played by the agent(s):

0 1 2

e 0,48,52173 3 4 5
e 210,4,75,8,6,3

6 7 8

- Which state(s) have actions with non-zero Q-values?
- What are those action(s)?

O
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A simple MDP

a b
Pr(B |A,a)=0.75 Pr(C |A,a)=0.25 Pr(D |A,b)=0.4 Pr(E|A,b)=0.6
B D
c d e f g h | J
3 1 0 2 4 2 3 2

O

b DeepMind Multi-Agent and Al



A simple MBR Multiagent System

a b
F( (G
me(F,1) = 0.75 7e(F,2) = 0.25 7.(G,3) =04 T.(G,4) = 0.6
B . D]
C d e f g h [ J
3 1 0 2 4 2 3 2

o

b DeepMind Multi-Agent and Al



Terminal history A.K.A. Episode

(A, a, F, 1, B, c) is a terminal history.

o

b DeepMind Multi-Agent and Al



Terminal history A.K.A. Episode

a
F (O ()
T (F,1) = 0.75 me(F,2) = 0.25 7e(G, 3) = 04 T(G,4) = 0.6
B ays
C d e f h i j
3 -1 0 2 2 -3 2

(A, a, F, 1, B, ¢) is a terminal history. (A, b, G, 3, D, g) is a another terminal

history. @

b DeepMind Multi-Agent and Al



Prefix (non-terminal) Histories

(A, a, F, 2,C)is ahistory. Itis a prefix of (A, a, F, 2,C,e)and (A, a, F, 2, C, f).

o

b DeepMind Multi-Agent and Al



Perfect Recall of Actions and Observations

Another simple MDP:

-0.05

me(p,2) = 0.99

7e(p, 1) = 0.01

100

O

b DeepMind Multi-Agent and Al



Perfect Recall of Actions and Observations

Another simple MDP: A different MDP:

-0.05

7e(p, 1) = 0.01

100

O

b DeepMind Multi-Agent and Al



Counterfactual Regret (CFR) Minimization

Zinkevich et al. ‘O8

Algorithm to compute an approx.

Original game

Nash eq. in 2-player O-sum games s
. Abstraction algorithm | A
Hugely successful in computer Poker
Size usually reduced apriori based on f.a{;!“fhuﬁ?:ﬁ
inding a Nas
expert knowledge equilibrium
. . Nash .
Key innovations: equilibrium «—feeremodel g,
equilibrium
o Counterfactual values
o CFR Theorem Source: Sandholm ‘10

Private & Confidential

O



Partially Observable Zero-Sum Games

Kuhn (simplified) poker

Players start w/ 2 chips
Each: ante 1 chip
3-card deck

2 actions: pass, bet

Reward: money diff




TerminOlOgy Private & Confidential

e An information state, S, corresponds to a sequence of observations
o with respect to the player to play at §

Ante: 1 chip per player, , P1 bets (raise), P2 bets (call)

O



TerminOlOgy Private & Confidential

e An information state, S, corresponds to a sequence of observations
o with respect to the player to play at §

private observation

Ante: 1 chip per player, , P1 bets (raise), P2 bets (call)

O



TerminOlOgy Private & Confidential

e An information state, S, corresponds to a sequence of observations
o with respect to the player to play at §

private observation

Ante: 1 chip per player, , P1 bets (raise), P2 bets (call)

Environment is in one of many world states h € s

O



TerminOlOgy Private & Confidential

e An information state, S, corresponds to a sequence of observations
o with respect to the player to play at §

private observation

Ante: 1 chip per player, , P1 bets (raise), P2 bets (call)

Environment is in one of many world states @E S

full history of actions (including nature’s!!) @



Goal: (Approximate) Nash Equilibria and minimax

Minimax & Nash equilibrium

von Neumann 1928 Nash 1950

v1 = max min uy (71, 72)
1 72

v] = min max ui (71, 72)
72 ™

In 2P zero-sum, these are the same! @



Private & Confidential

Goal: (Approximate) Nash Equilibria and minimax

Minimax & Nash equilibrium 2P Zero-sum Equilibria

The optima: 7 = (7], 7T5)

e Exist! (Maybe stochastic.)

e Called minimax-optimal joint policy

o AKA. Nash equilibrium

von Neumann 1928 Nash 1950
e They are interchangeable!
— ] * */ >k x/ x/ >k
v = maxminu (m, 72) o Vr*,m* = (n],m5), (7}, m3)

e Each policy is a best response to the

v1 = min maxui(m, T
72 ™ ( ’ ) Other

In 2P zero-sum, these are the same! @



Counterfactual Minimization

CFR is policy iteration:

1. Evaluate policy to compute values
2. Improve the policy

O



Counterfactual Minimization

CFR is (special kind of) policy iteration:

1. Evaluate policy to compute counterfactual values: %cr,i(sa a), U7CT,7; (5)
2. Improve the policy (using state-local regret minimization)
3. Compute an average joint policy 77 = (71, T2)

O



Counterfactual Minimization

CFR is (special kind of) policy iteration:

1. Evaluate policy to compute counterfactual values: %cr,i(sa a), 71707,7; (5)
2. Improve the policy (using state-local regret minimization)

)

3. Compute an average joint policy m = (7_T1, 7_T2)

31~

CFR Theorem: 7T converges to an €-Nash eq. with ¢ <O (

O



Counterfactual Minimization

CFR is (special kind of) policy iteration:

1. Evaluate policy to compute counterfactual values: %cr,i(sa a), U7CT,7; (3)
2. Improve the policy (using state-local regret minimization)
3. Compute an average joint policy 7 = (71, T2)

aiml s
3~
SN—

CFR Theorem: 7T converges to an €-Nash eq. with ¢ <O

d

neither player can gain more than € by deviating

O



CFR Example Private & Confidential

Kuhn poker:

Players: 2 chips
3-card deck

Ante 1 chip

| I
. ,i» i L
Actions: - %] ﬁy ~ n i
I I I I
- Pass Jo o lo U0l (R oY) ol T L0}
_ Bet Pass [Bet [Pass|\Bet Pass assci J Bet [Pass ass_ Bcl_ _/ Bet ass_Bcl o _c Bet \Pass \Bet \Pass \Pass PasfBet  Pass \Bet

Util = money diff YOO L) OGO [nlln] 1 O 1l QOO OO O OO

PassBet  Pass \Bet p

Shown: util to pl
QOO0 OOLOOOOOO

O



CFR Example Private & Confidential

Uniform initial policies:

Let's compute CFR

values for state

Pass [Bet [Pass\Bet Pass /Pass Bet Bet\Bet \Pass \Bet '\ Pass \Pass PasfBet  Pass \Bet
| I | I | I
OO0 ¢ ©O I & »» OOOOOOOPOP
L= | [y B I [/ I
PassBet  Pass \Bet Pass Bet  Pass\Bet PassBet  Pass\Bet

SOO00 OOOLOOHOOO

O



Counterfactual Values Private & Confidential

¢ i(s,a)= Y 0T (R)n"(h, 2)ui(2)

h,z€Z(s,a)

/

Terminal histories reachable from
any h in s after taking action a

O



Counterfactual Values Private & Confidential

ai(ssa)= Y nTi()n"(h, 2)ui(z)

h,z€Z(s,a)

Opponents’ reach

Terminal histories reachable from probabilities along h
any h in s after taking action a

O



Counterfactual Values Private & Confidential

g i(ssa)= Y TR0 (hy 2)ui(2)

h,z€Z(s,a)

Opponents’ reach

Terminal histories reachable from probabilities along h
any h in s after taking action a

Both players’ reach from h to z

O



Counterfactual Values Private & Confidential

g i(ssa)= Y TR0 (hy 2)ui(2)

h,z€Z(s,a)
: L Opponents’ reach Utility to player i of
Terminal histories reachable from probabilities along h Terminal z

any h in s after taking action a

Both players’ reach from h to z

O



Counterfactual Values Private & Confidential

’Ufr,i(s) — ZaEA(S) W(Sa a’)q;,i(sa a’)

O



CFR Example

Two histories:

° h=12b
e h'=02b

Private & Confidential

S o -—cl _cl B Pil.\i _I Bet
JO[Ox )@Y (@) ) () i 1 (1) () R OIOX
-\ (N JZauiy NV4 - k,&-

Pass [Bet [Pass\Bet Pass /Pass Bet Bet [Pass  Pass \Bet Pass \Bet \Pass \Pass PasfBet  Pass \Bet

Ljm|= L] = L] =

oeoeoomwoommoooooooeoo

PassBet  Pass \Bet Pass Bet  Pass\Bet PassBet  Pass \Bet

QOOO OOOOOOOO

O



CFR Example

Two histories:

° h=12b
e h'=02b

Sl gl
Sl ol
R
L
N—r

Private & Confidential

S o -—cl _cl B Pil.\i _I Bet
JO[Ox )@Y (@) ) () i 1 (1) () R OIOX
-\ (N JZauiy NV4 - k,&-

Pass [Bet [Pass\Bet Pass /Pass Bet Bet [Pass  Pass \Bet Pass \Bet \Pass \Pass PasfBet  Pass \Bet

Ljm|= L] = L] =

oeoeoomwoommoooooooeoo

PassBet  Pass \Bet Pass Bet  Pass\Bet PassBet  Pass \Bet

QOOO OOOOOOOO

O



CFR Example

Two histories:

° h=12b
e h'=02b

c _ 1
(:Z7T,2<S7p) - _E

Private & Confidential

i .
Jolo efqm@ig@ oloY

Pass [Bet [Pas: t Bet [Pass  Pass \Bet Pass \Bet \Pass \Pass PasfBet  Pass \Bet

Ljm|= L] = L] =

oeoeoommoommoooooooeoo

PassBet  Pass \Bet Pass Bet  Pass\Bet PassBet  Pass \Bet

QOOO OOOOOOOO

O



CFR Example

Two histories:

° h=12b
e h'=02b

Private & Confidential

.»i.ﬂ
s B
AN O O O O OO Ol O 208

ass [Bet [Pas: t Pass /Pass Bet Bet [Pass  Pass \Bet Bet Pass \Bet Pass \Bet \Pass \Pass PasfBet  Pass \Bet

oeoeoomoomoooooooeoo

L L] L= I

PassBet  Pass \Bet

QOOO OOOOOOOO

O



CFR Example

Two histories:

° h=12b
e h'=02b

c _ 1
(:Z7T,2<S7p) - _E

N— N
DO

Private & Confidential

.»i.ﬂ
s B
AN O O O O OO Ol O 208

ass [Bet [Pas: t Pass /Pass Bet Bet [Pass  Pass \Bet Bet Pass \Bet Pass \Bet \Pass \Pass PasfBet  Pass \Bet

oeoeoomoomoooooooeoo

Ljm|= L] =

L/ = I

PassBet  Pass \Bet

QOOO OOOOOOOO

O



CFR Example

Two histories:

° h=12b
e h'=02b

Private & Confidential

S o -—cl _cl B Pil.\i _I Bet -Bcl- --I
JO[Ox )@Y (@) ) () i 1 (1) () R OIOX
R 8 R i sy A £4 (RS 2RE SN L NG

ass [Bet [Pas: t Pass /Pass Bet Bet [Pass  Pass \Bet Pass \Bet \Pass \Pass PasfBet  Pass \Bet

Ljm|= L] = L] =

oeoeoomwoommoooooooeoo

PassBet  Pass \Bet Pass Bet  Pass\Bet PassBet  Pass \Bet

QOOO OOOOOOOO

O



CFR Example Private & Confidential

Two histories:

e h=12b
e h'=02b
_ e
Q7CT,2(S7p) T _E S et et /P ?{ Pass Bet Bet
_ 1 Jolo: ﬁ OO}
() = L. (—L)y 4 1.1 S&OOSS FIl O ] & IR SO S DD SO
m™2\7) T 2 12 2 6 oo o .

QOOO OOOOOOOO

O



CFR Example

Two histories:

e h=12b
e h =02b
_ 1
Ir2(5:P) = — 15
_ 1
Q7cr,2 S, - 6
1

Private & Confidential

o b e

ass [Bet [Pas: t Pass /Pass Bet Bet [Pass  Pass \Bet Bet Pass \Bet Pass \Bet \Pass \Pass PasfBet  Pass \Bet

Ljm|=

oeoeoomoomoooooooeoo

L] iy A& = I

PassBet  Pass \Bet

QOOO OOOOOOOO

O



CFR Example

Two histories:

e h=12b

e h'=02b
a5 a(s,p) = — =5
Q7cr,2(37 b) — %

r(8,0) = 4z 2(8,P) = V5 o(s) =

T(Sv b) - %

Private & Confidential

2
> ‘G
S Bet Bet /P p P B Pass Bet Bet
| | | I
() (e BOIOWIOIO, () (1) (1r) R OIO}
-\ (o (el XG4 - | [\ 'Q el L -\=\
Bet Pass \Bet Bed\Bet \Pass \Bet \Pass \Pass PasfBet  Pass \Bet

Pass [Bet [Pass\Bet Pass /Pass Bet Bet [Pass  Pass \Bet

oeoeoomoommoooooooeoo

Y S 5 I [/ A2 I

PassBet  Pass \Bet

QOOO OOOOOOOO

— Update policy: W(S,p) = O, 7T(8, b) =1 @



CFR ExerCise Private & Confidential

Biased Rock, Paper, Scissors: (utility for first player shown)

R P S
Rl 0 -1 v
Pl 1 0 -1
S|l—-v 1 0

Assume ) — 9.

- What is the policy at both states after one iteration
of CFR?

- By inspection: what action will have the largest
regret for player 2 in the next iteration? How does
this affect their policy?
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Advantage VS. Regrets Private & Confidential

A key notion in CFR is an immediate regret:

r(s,a) = qr (8, a) = vg ;(s)

O



Advantage VS. Regrets Private & Confidential

A key notion in CFR is an immediate regret:

r(s,a) = Q7Cr,i(87 a) — Uﬁ,z’(s)

/

counterfactual g-value

joint policy return to player 7

(player to play at S)

O



Advantage VS. Regrets Private & Confidential

A key notion in CFR is an immediate regret:

r(s,a) = Q7Cr,i(87 a) — Uﬁ,z’(s)

/

counterfactual g-value

joint policy return to player 7

(player to play at S)

— This is just a (counterfactual) advantage!

O



RL values vs. Counterfactual values

What............... Is a g-value?

q7T,’l: (87 a)

O



RL values vs. Counterfactual values

What............... Is a g-value?

Qﬂ',i(37 CL)

Exp. return playing from S given:

S reached, take @, then follow 7T

O



RL values vs. Counterfactual values

What.................... Is a g-value?
- e a/\c aph
wioa)  ARK

Exp. return playing from S given:

S reached, take @, then follow 7T

O



RL values vs. Counterfactual values

What........ Is a counterfactual value?

q;,i(sv CL)

O



RL values vs. Counterfactual values

What........ Is a counterfactual value?

C_I7Cr,z'(87 CL)

Portion of the exp. return to player 3 from start, given:

player ; plays to get to S (others use ), then take a

O



Private & Confidential

RL values vs. Counterfactual values

What........ Is a counterfactual value?

c p
qﬁ,i(sv a) /Q@yj&ﬁ

Portion of the exp. return to player 3 from start, given:

player ; plays to get to S (others use ), then take a

o



RL values vs. Counterfactual values

What.................... Is a g-value?
- e a/\c aph
wioa)  ARK

Qﬂ',’i(sh Clt) — 43prwr[Gt \ St = St, Ay = at]

O



RL values vs. Counterfactual values

Pr(h | si)n" (ha, 2)ui(z)
I’L,ZEZ(St ,a,t)

All terminal histories z reachable Reach probabilities: product of Return achieved over

frpm S paired with the'ir'prefix all poligigg’ state-action : terminal history z
histories ha, where his in s probabilities along the portion of

the history between ha and z

Private & Confidential

O



RL values vs. Counterfactual values

_ Z PI‘(St | h) Pl‘(h) nﬂ(ha, Z)uz(z)
h,z€Z(s¢,a+)

by Bayes' rule

O



RL values vs. Counterfactual values

— Z I]?))r(h) n" (ha, z)u;(2)

h,z€Z(s¢,a+) I‘(St)

Since h isin St and unique to Sy

O



RL values vs. Counterfactual values

n™(h _
= ) > ( i(h,)" (ha, 2)u; ()
h,2€Z(s¢,a:) N €st i

)



RL values vs. Counterfactual values

Only player i’s reach probabilities Player i’'s opponent’s probabilities (inc. chance!)

e
ni ()N,
Z Zh’ést ni (W)n™;(h)

/S

Similarly here and here

0" (ha, z)u;(2)
h,ZGZ(St ,at)

O



RL values vs. Counterfactual values

- ¥ n; (h)nZ, (h)

n" (ha, z)u;(2)
h,z€ Z(st, a,t) ( )Zh’ES — ( )

Due to perfect recall!

O



RL values vs. Counterfactual values

Uzi(h) -
- Z E T (h/)77 (hCL?Z)u’L(Z)
hazEZ(St,CLt) hlest 77_7/

O



RL values vs. Counterfactual values

- /%

h,z€ Z(st,a+)

This is a counterfactual value!

O



RL values vs. Counterfactual values

L (50, ar)
ZI’LESt n—z(h)

O



O-based Policy Gradient

A.K.A. “all-actions” policy gradient
A.K.A. Mean Actor-Critic (Allen et al. ‘17)

VSPG()—Z[VQTF(SCLG ( (s,a;w) Zﬂst 3bw)>

a

O



Private & Confidential

Regret-based Policy Gradient (Srinivasan et al. ‘18)

Instead of maximizing objective, minimize regret:

+
VRPG( Zve ( (s,a; w) — Zw(s,b; 0)q(s, b; W))
b

Gradient descent (instead of ascent)

o
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Counterfactual Minimization

CFR is special kind of policy iteration:

1. Evaluate policy to compute counterfactual values: CI7CT,¢(37 a), 7170771' (3)
2. Improve the policy (using state-local regret minimization)

)

3. Compute an average joint policy m = (7_T1, 7_T2)

31~

CFR Theorem: 7T converges to an €-Nash eq. with ¢ <O (

O



Private & Confidential

Monte Carlo Counterfactual Minimization

MCCEFR is sample-based CFR:
()

& 2C
1. Evaluate estimated counterfactual values: QW,i(Sv a), W,i(s)
2. Improve the policy (using state-local regret minimization)
3. Compute an estimated average joint policy T — (721-1, 7272)

MCCFR Theorem: with probability 1 — D 721' converges to an €-Nash
eq. with
1

= C\GwT

depends on sampling scheme and structure of game @




MCCFR OVerVieW Private & Confidential

e All terminal histories: Z




MCCFR OVerVieW Private & Confidential

e All terminal histories: Z
e Define blocks Q; € O:
o @Q; C Z forallj

o U;Q; =2

——
An example ) ; @



MCCFR OVerVieW Private & Confidential

e All terminal histories: 2
e Define blocks Q; € O:
o @Q; C Z forallj
o U;Q; =2
e Sampled counterfactual values:

Ur,i(817)  Gr,i(s,alj)

——
An example ) ; @



MCCFR OVerVieW Private & Confidential

e All terminal histories: 2
e Define blocks Q; € O:
o @Q; C Z forallj
o U;Q; =2
e Sampled counterfactual values:

U i(87)  Gr.i(s,alj)
e Sampled counterfactual regret:

—— fﬂ,’i(57 CL) — CLCr,z'(Sa CL|]) o ?7767,2(8)
An example Qj @




MCCFR OVeI'VieW Private & Confidential
o Let ¢j = Pr(Qy)

O



MCCFR OVerVieW Private & Confidential

o let g; = Pr(QJ)
o let Q(Z) — Zj:zEQj UG

O



MCCFR OVerVieW Private & Confidential

o Let g = Pr(Q;)
o Let ¢(z2) = Zj:zEQj qj

Actions at S:
A(s) ={a,b,c}

______________




MCCFR OVerVieW Private & Confidential

o let ¢ = PI'(QJ)

o Let Q<Z) — Zj:zEQj d;
e let hC z meanthathis a prefix

Actions at S:
A(s) ={a,b,c}

______________

_____




MCCFR Overview

Let q; = PI‘(QJ)

Let Q<Z) — Zj:zEQj q;
Let h C z mean that his a prefix
let Z(s) ={z| h€s,hC z}

Private & Confidential

Actions at S:
A(s) ={a,b,c}

______________

_____




MCCFR OVerVieW Private & Confidential

Let q; = PI‘(QJ)

Let Q<Z) — Zj:zEQj q;
Let h C z mean that his a prefix
let Z(s) ={z| h€s,hC z}

Actions at S:
A(s) ={a,b,c}

Sampled counterfactual value:
~e N
UTK’,?: (S ‘] ) T I G !

ZhES,ZEQj NZ(s) ﬁnzi(h)nﬂ(hv Z)uz<z) _____

!

Reach probabilities Utility to player i




MCCFR OVerVieW Private & Confidential

Let q; = PI‘(QJ)

Let Q<Z) — Zj:zEQj q;
Let h C z mean that his a prefix
let Z(s) ={z| h€s,hC z}

Actions at S:
A(s) ={a,b,c}

Sampled counterfactual value:
~e N
UTK’,?: (S ‘] ) T I G !

ZhES,zEQjﬂZ(S) @' zz(h)nﬂ(ha Z)uz<z) SNV

Importance sampling correction term




General MCCFR Lemma Private & Confidential

o7 (s]7)] = vz 4(s)

O



General MCCFR Lemma Private & Confidential

L|07,i(s17)] =
Zj qj0r,i(8]7)

O



General MCCFR Lemma

Private & Confidential

O



General MCCFR Lemma Private & Confidential

— S:j S:hES,ZEQ NZ(s) %nzi(}wnw(ha Z)uz(z)

J

Zj:zé ; 15
— ZzEZ(S) q(;;j nZ; (h)n™ (h, z)ui(2)

O



General MCCFR Lemma Private & Confidential

= ZzEZ(s) nZ;(h)n™ (h, 2)ui(2)

O



General MCCFR Lemma Private & Confidential

= ZzEZ(s) nZ;(h)n™ (h, 2)ui(2)

O
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Search in Perfect Information Games

Classic Minimax game-tree search (von Neumann ‘28, Knuth & Moore '75)

0 (max) @\

1 (min -10 -]
( ) _______________ A _________________/k_v\\ _____
2 (max) ® @
_________ //v/\\ (4//'/\\(;
3 (min) 10 5| |10 5 o| |-7
e N fh--- - ANY - - (N -

4 (max) ® WOE @OE



Search in Perfect Information Games

Monte Carlo Tree Search (MCTS) (Coulom ‘06, Kocsis & Szepesvari ‘06)

Selection Expansion Simulation Backpropagation

i b g

O



SearCh in Imperfect Information Games Private & Confidential

One solution: Perfect Information (Monte Carlo / Minimax)

____________________________

1. Repeat:
a. Sample aworld h ~ D(S)
b. Recommandation = PerfInfoSearch(s)
2. Aggregate recommendations and choose a single action

O



TWO prOblemS Private & Confidential

e Strategy fusion: assumes one can use different strategies in
different worlds— “averaging over clairvoyance” (Russell & Norvig)

e Non-locality: value of an information set is not expressable only
from values of its subtrees

O



Fixing Strategy Fusion: Information Set MCTS

Aggregate MCTS statistics over information
states!

1. Repeat:
a. Sample a world h ~ D(S)
b. Simulate using MCTS, storing store
statististics atS st. h € s
2. Return action with highest estimate

Nodes corresponds to
information states, not worlds!

O



The Problem of Non-Locality (Lisy et al. ‘15)

3 0 0 3

Figure 1: An extensive-form game demonstrating
the problem of non-locality with maximizing A, min-
imizing 7 and chance () players.

O
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Subgame Decomposition

Solving Imperfect Information Games with Decomposition (Burch et al. ‘14)

Figure 1: Left: rock-paper-scissors. Right: rock—paper—
scissors split into trunk and one subgame.

O



Subgame Decomposition

Private & Confidential

“Solving Imperfect Information Games with Decomposition (Burch et al. 14)

Initial Chance Event
/ —:m R information sets
FITHT T.Leaf utlhty
\ kR 2 ()
Sa Sb - U(z)= <)
\ hEI(r) 2

Leaf utility: u(z) Leaf utility: u(z) = u(z)*k

Figure 2: Construction of the Re-Solving Game

O
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Plan Private & Confidential

1. Intro + install and test OpenSpiel
2. Run the example
3. Experiments:

a. Q-learning in Tic-Tac-Toe

a. CFR in Kuhn Poker

O



OpenSpiel

Released Aug’ 19

b DeepMind

Open source framework for research
in RL & Games
C++, Python, and Swift impl’s

25+ games

10+ algorithms

Multi-Agent and Al



OpenSpiel

Supports:

n-player games

Zero-sum, coop, general-sum
Perfect / imperfect info

Simultaneous-move games

Paper @ https://arxiv.org/abs/1908.09453

Private & Confidential

O


https://arxiv.org/abs/1908.09453

OpenSpiel: Example Viz (Kuhn Poker)

3 o I I
L i 2 |[ 2
D ‘i <]
Bet /7 p p : s Bet Bet
| oy _l T a _l
3aie Subime—~wou
Bet Pass \Bet Bet\Bet \Pass \Bet \Pass \Pass PasfBet  Pass \Bet

Pass [Bet [Pass\Bet Pass /Pass Bet Bet [Pass  Pass \Bet

oeoeoomoomwoooooooeoo

2 4 2 2B 4 4 & 4 & 4 4 _

O



OpenSpiel: Example Viz (Replicator dynamics)

Scissors Scissors Scissors
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OpenSpiel: Example Viz (Replicator dynamics)
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OpenSpiel: Design & Code

Design Philosophy

1. Keep it simple.
2. Keepitlight.

Main structure:

e C++ core + Python API
e  Swift port

e Go API (in the works)

e Gamesin C++

e Algsin C++ and Python
e Many examples / colabs

Private & Confidential

Example

import random
import pyspiel
import numpy as np

game = pyspiel.load_game("kuhn_poker")
state = game.new_initial_state()
while not state.is_terminal():
legal_actions = state.legal_actions()
if state.is_chance_node():
# Sample a chance event outcome.
outcomes_with_probs = state.chance_outcomes()
action_list, prob_list = zip(*outcomes_with_probs)
action = np.random.choice(action_list, p=prob_Llist)
state.apply_action(action)
else:
# The algorithm can pick an action based on an observation (fully observable
# games) or an information state (information available for that player)
# We arbitrarily select the first available action as an example.
action = legal_actions[0]
state.apply_action(action)

O



Install OpenSpiel

1. Fullinstructions on here https://github.com/deepmind/open_spiel
2. Fast install instruction on page 6 of https://arxiv.org/abs/1908.09453:

Private & Confidential

sudo apt-get install git cmake g++

git clone https://github.com/deepmind/open_spiel.git

cd open_spiel

./install.sh # Install various dependencies (note: assumes Debian-based distro!)
pip3 install --upgrade -r requirements.txt # Install Python dependencies

mkdir build

cd build
# Note: Python version installed should be >= Python_TARGET_VERSION specified here

CXX=g++ cmake -DPython_TARGET_VERSION=3.6 -DCMAKE_CXX_COMPILER=g++ ../open_spiel
make -jl12 # The 12 here is the number of parallel processes used to build
ctest -j12 # Run the tests to verify that the installation succeeded

O


https://github.com/deepmind/open_spiel
https://arxiv.org/abs/1908.09453

Run the Example Private & Confidential

First, set the PYTHONPATH (can add this to .bashrc, .profile, or .bash_profile)

# For the Python modules in open_spiel.

export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>

# For the Python bindings of Pyspiel

export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python

Once built:
cd ..

python3 open spiel/python/examples/example.py

O



Interact from Python directly

:open_spiel$
‘ ir2:open_spiel$ python3
Python 3. 7 4 (default Aug 27 2@19 23:45:03)
[Clang 10.0.1 (clang-1001.0 4)] on darwin
Type "help", "copyright", ”credits” or "license" for more information.
>>> import pyspiel
[>>> game = pyspiel.load_game("tic_tac_toe")
>>> state = game.new_initial_state()
>>> print(state)

state.apply_action(4)
print(state)

« Xa

>>> print(state.legal_actions())
1 PR DA S GV - iy S )

>>> print(state.is_terminal())
False

>>> print(state.current_player())
1

>>> || @




OpenSpiel EXperiments Private & Confidential

1. Run Q-learning in Tic-Tac-Toe for 100 episodes:
a. Can you beat the agent?

b. Try running it now for 100000 episodes? Is it harder to beat? If so, in what way?
2. Run CFR on Kuhn poker for 1 iteration:

a. Print the current policy. What do you notice about the it? Can you explain?

b. Print the average policy. What do you notice about the it? Can you explain?

c. Now run for 1000 iterations. What does the average strategy look like? Can you
explain its general form?

3. Now, try to run CFR on Tic-Tac-Toe. Any idea why it takes so long?

python3 open spiel/python/examples/tic tac toe glearner.py --num episodes=100
python3 open spiel/python/examples/cfr example.py --iterations=1

Hint for 22zadda str  functionto python.policy.TabularPolicy, which loops over
self.state lookup ,thenuses action probabilities to get the policy for each info state @
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