DeepMind

Multiagent Reinforcement Learning

Marc Lanctot

Workshop Plan

10:00 - 10:15	Workshop Intro
10:15 - 12:00	Introduction to Mulitagent Reinforcement Learning (MARL)
12:00 - 12:30	Break for Lunch
12:30 - 2:30	Adapting RL to Zero-Sum Games
2:30 - 3:00	Coffee Break
3:00 - 4:00	Practical Session: RL & Games with OpenSpiel

Joint work with many great collaborators!

Many, many great collaborators!

DeepMind

Workshop Intro

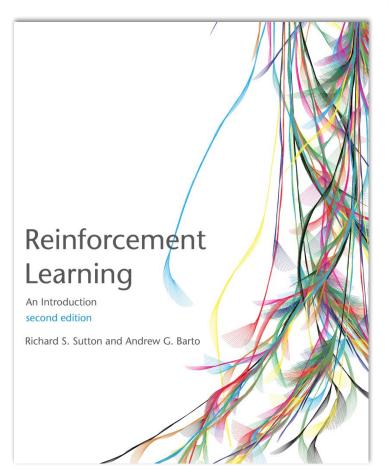
Reinforcement Learning

Reinforcement Learning:

An Introduction

Sutton & Barto '18

http://incompleteideas.net/book/the-book.html



• Unbiased estimator

- Unbiased estimator
- Importance sampling

- Unbiased estimator
- Importance sampling
- Markov decision process

- Unbiased estimator
- Importance sampling
- Markov decision process
- Nash equilibrium or Minimax Theorem

- Unbiased estimator
- Importance sampling
- Markov decision process
- Nash equilibrium or Minimax Theorem
- Regret Minimization
 - AKA No-regret learning, Hannan/universal consistency

- Unbiased estimator
- Importance sampling
- Markov decision process
- Nash equilibrium or Minimax Theorem
- Regret Minimization
 - AKA No-regret learning, Hannan/universal consistency
- Generalized Policy Iteration

- Unbiased estimator
- Importance sampling
- Markov decision process
- Nash equilibrium or Minimax Theorem
- Regret Minimization
 - AKA No-regret learning, Hannan/universal consistency
- Generalized Policy Iteration
- Reinforcement Learning (RL)

- Unbiased estimator
- Importance sampling
- Markov decision process
- Nash equilibrium or Minimax Theorem
- Regret Minimization
 - AKA No-regret learning, Hannan/universal consistency
- Generalized Policy Iteration
- Reinforcement Learning (RL)
- Difference between value-based RL and policy gradients

- Unbiased estimator
- Importance sampling
- Markov decision process
- Nash equilibrium or Minimax Theorem
- Regret Minimization
 - AKA No-regret learning, Hannan/universal consistency
- Generalized Policy Iteration
- Reinforcement Learning (RL)
- Difference between value-based RL and policy gradients
- Monte Carlo tree search or minimax search

- Unbiased estimator
- Importance sampling
- Markov decision process
- Nash equilibrium or Minimax Theorem
- Regret Minimization
 - AKA No-regret learning, Hannan/universal consistency
- Generalized Policy Iteration
- Reinforcement Learning (RL)
- Difference between value-based RL and policy gradients
- Monte Carlo tree search or minimax search
- Function approximation or neural network

- Unbiased estimator
- Importance sampling
- Markov decision process
- Nash equilibrium or Minimax Theorem
- Regret Minimization
 - AKA No-regret learning, Hannan/universal consistency
- Generalized Policy Iteration
- Reinforcement Learning (RL)
- Difference between value-based RL and policy gradients
- Monte Carlo tree search or minimax search
- Function approximation or neural network
- Proof by induction

Participate: Welcome Game & Research Topics

- Let's play a multiplayer game!
- 2. Research topic / interest survey

First rule: no Internet (wifi / cell phone / laptop etc.) for the next 5 min!

Game: Guess ²/₃ of the Average

- 1. Write down a real number between 0 and 100.
- 2. Winner: closest value to \(^2\) of the mean of all values

Ok to take a minute or so to decide... but no talking!

Research Topic / **Interest Survey**

- 1. Tell me what you do or are generally interested in.
- 2. ... in no more than 10 words!

Large Problems

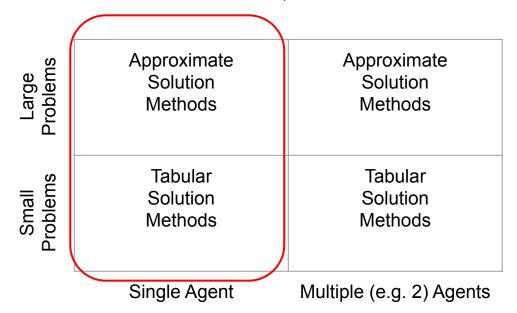
Small Problems

Approximate	Approximate
Solution	Solution
Methods	Methods
Tabular	Tabular
Solution	Solution
Methods	Methods

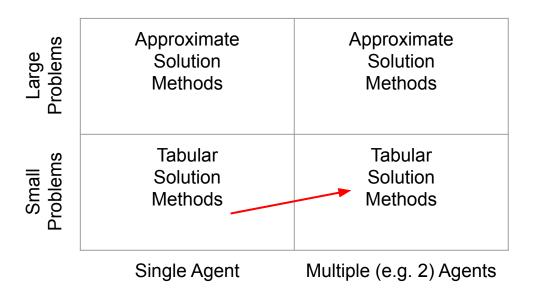
Single Agent

Multiple (e.g. 2) Agents

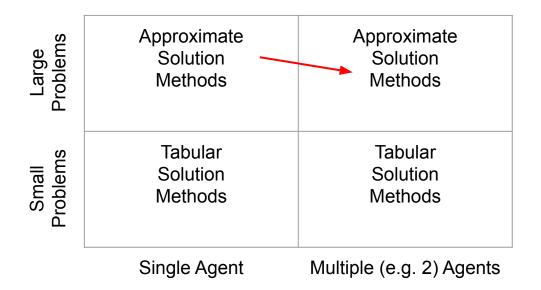
Sutton & Barto '98, '18



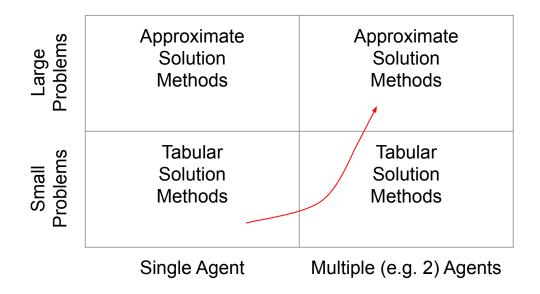
First era of multiagent RL



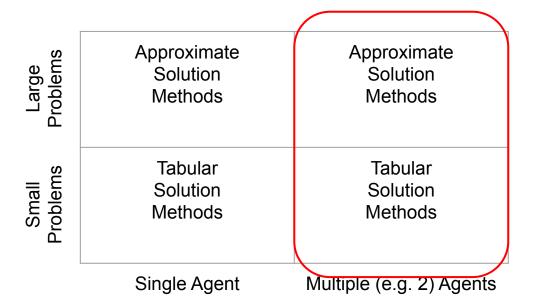
Multiagent Deep RL era ('16 - now)



Talk focus



My 10-year mission



Biscuits vs Cookies

Brief note on Terminology

Games community

Reinforcement learning community

Player Strategy Best Response Utility State Move Agent
Policy
Greedy Policy
Reward
(Information) State
Action

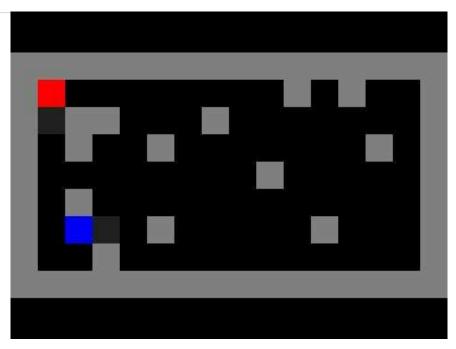
DeepMind

Section Plan

- a. What is Multiagent Reinforcement Learning (MARL)?
- b. Foundations & Background
- c. Basic Formalisms & Algorithms
- d. (Quick intro to) Advanced Topic
- e. General MARL wrap-up

Intro to MARL

Multiagent Reinforcement Learning

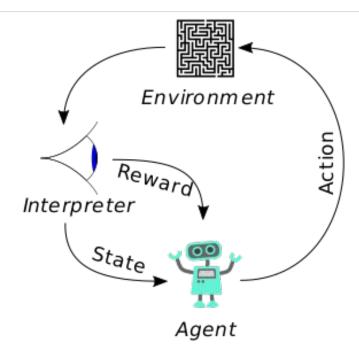


pommerman.com

Laser Tag

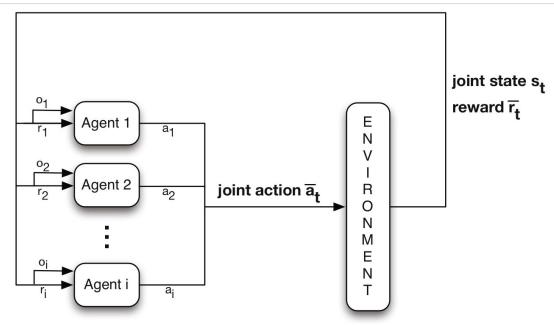
Multiagent Reinforcement Learning

Traditional (Single-Agent) RL



Source: Wikipedia

Multiagent Reinforcement Learning



Source: Nowe, Vrancx & De Hauwere 2012

Important Historical Note

If multi-agent learning is the answer, what is the question?

Yoav Shoham, Rob Powers, and Trond Grenager Stanford University {shoham,powers,grenager}@cs.stanford.edu February 15, 2006

Foundations of multi-agent learning: Introduction to the special issue

Rakesh V. Vohra, Michael P. Wellman

Pages 363-364

An economist's perspective on multi-agent learning

Drew Fudenberg, David K. Levine

Pages 378-381

Perspectives on multiagent learning

Tuomas Sandholm

Pages 382-391

Agendas for multi-agent learning

Geoffrey J. Gordon

Pages 392-401

Multiagent learning is not the answer. It is the question

Peter Stone

Pages 402-405

What evolutionary game theory tells us about multiagent learning

Karl Tuyls, Simon Parsons

Pages 406-416

Multi-agent learning and the descriptive value of simple models

Ido Erev, Alvin E. Roth

Pages 423-428

The possible and the impossible in multi-agent learning

H. Peyton Young

Pages 429-433

No regrets about no-regret

Yu-Han Chang

Pages 434-439

A hierarchy of prescriptive goals for multiagent learning Martin Zinkevich, Amy Greenwald, Michael L. Littman Pages 440-447

Learning equilibrium as a generalization of learning to optimize Dov Monderer, Moshe Tennenholtz
Pages 448-452

Some Specific Axes of MARL

Centralized:

One brain / algorithm deployed across many agents

Decentralized:

- All agents learn individually
- Communication limitations defined by environment

Some Specific Axes of MARL

Prescriptive:

Suggests how agents should behave

Descriptive:

Forecast how agent will behave

Some Specific Axes of MARL

Cooperative: Agents cooperate to achieve a goal

Competitive: Agents compete against each other

Neither: Agents maximize their utility which may

require cooperating and/or competing

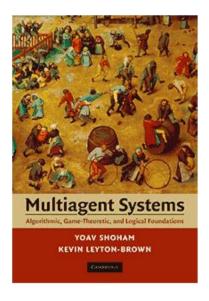
Our Focus

- Centralized training for decentralized execution (very common)
- 2. Mostly prescriptive
- 3. Mostly competitive; sprinkle of cooperative and neither

Foundations & Background

Shoham & Leyton-Brown '09

Main Page Table of Contents Instructional Resources Errata eBook Download new!



Multiagent Systems

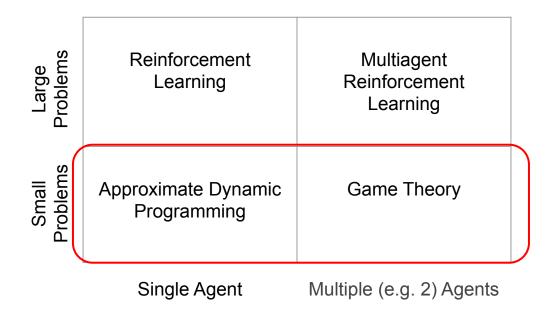
Algorithmic, Game-Theoretic, and Logical Foundations

Yoav Shoham Stanford University Kevin Leyton-Brown University of British Columbia

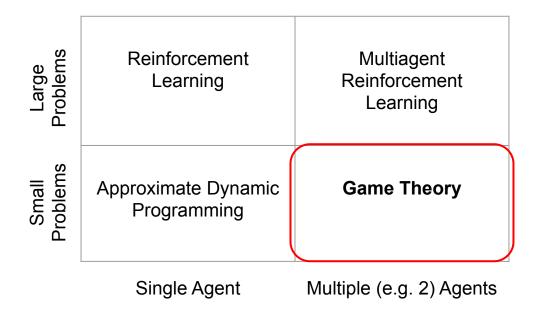
Cambridge University Press, 2009 Order online: amazon.com.

masfoundations.org

Foundations of (MA)RL



Foundations of Multiagent RL



• Set of players $i \in \mathcal{N} = \{1, 2, \cdots, n\}$

- Set of players $i \in \mathcal{N} = \{1, 2, \cdots, n\}$
- ullet Each player has set of **actions** $\mathcal{A}_i \in \{a_1, a_2, \dots\}$

- Set of players $i \in \mathcal{N} = \{1, 2, \cdots, n\}$
- ullet Each player has set of **actions** $\mathcal{A}_i \in \{a_1, a_2, \dots\}$
- Set of joint actions $\mathcal{A}=\mathcal{A}_1 imes\mathcal{A}_2 imes\cdots imes\mathcal{A}_n$

- Set of players $i \in \mathcal{N} = \{1, 2, \cdots, n\}$
- ullet Each player has set of **actions** $\mathcal{A}_i \in \{a_1, a_2, \dots\}$
- Set of joint actions $\mathcal{A}=\mathcal{A}_1 imes\mathcal{A}_2 imes\cdots imes\mathcal{A}_n$
- A utility function $u: \mathcal{N} \times \mathcal{A} \to U \subseteq \Re$

column player

Α

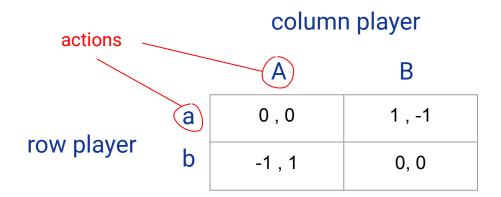
В

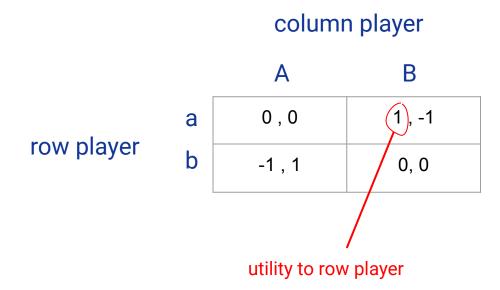
row player

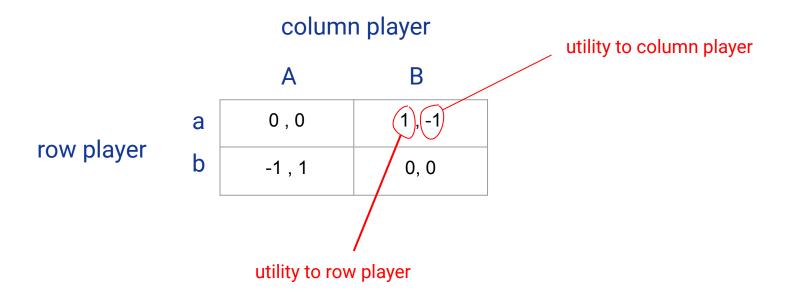
b

a

0,0	1 , -1
-1 , 1	0, 0

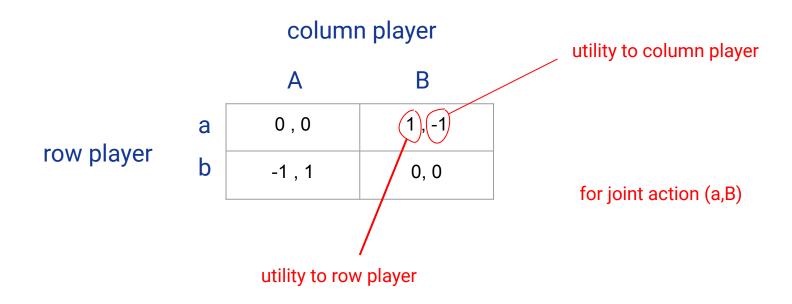






Example: (Bi-)Matrix Games

$$(n = 2)$$



- Set of players $i \in \mathcal{N} = \{1, 2, \cdots, n\}$
- ullet Each player has set of **actions** $\mathcal{A}_i \in \{a_1, a_2, \dots\}$
- Set of joint actions $\mathcal{A}=\mathcal{A}_1 imes\mathcal{A}_2 imes\cdots imes\mathcal{A}_n$
- A utility function $u: \mathcal{N} \times \mathcal{A} \to U \subseteq \Re$

Each player: $\pi_i \in \Delta(\mathcal{A}_i)$, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

- Set of players $i \in \mathcal{N} = \{1, 2, \cdots, n\}$
- ullet Each player has set of **actions** $\mathcal{A}_i \in \{a_1, a_2, \dots\}$
- Set of joint actions $\mathcal{A}=\mathcal{A}_1 imes\mathcal{A}_2 imes\cdots imes\mathcal{A}_n$
- A utility function $u: \mathcal{N} \times \mathcal{A} \to U \subseteq \Re$

Each player:
$$\pi_i \in \Delta(\mathcal{A}_i)$$
, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

Problem! This is a *joint* policy -

Suppose we are player i and we fix policies of other players

Suppose we are player i and we fix policies of other players $(-i = \mathcal{N} - \{i\})$

Suppose we are player i and we fix policies of other players $(-i = \mathcal{N} - \{i\})$

$$\pi_i \in \Delta(\mathcal{A}_i)$$
, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

Suppose we are player i and we fix policies of other players ($-i = \mathcal{N} - \{i\}$)

$$\pi_i \in \Delta(\mathcal{A}_i)$$
, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

$$\pi_i \in BR(\pi_{-i}) \Leftrightarrow u_i(\pi_i, \pi_{-i}) = \max_{\pi'_i} \mathbb{E}_{a \sim (\pi'_i, \pi_{-i})}[u_i(a)]$$

Suppose we are player i and we fix policies of other players ($-i = \mathcal{N} - \{i\}$)

$$\pi_i \in \Delta(\mathcal{A}_i)$$
, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

$$\pi_i \in BR(\pi_{-i}) \Leftrightarrow u_i(\pi_i, \pi_{-i}) = \max_{\pi'_i} \mathbb{E}_{a \sim (\pi'_i, \pi_{-i})}[u_i(a)]$$

 π_i is a **best response** to π_{-i}

column player

B

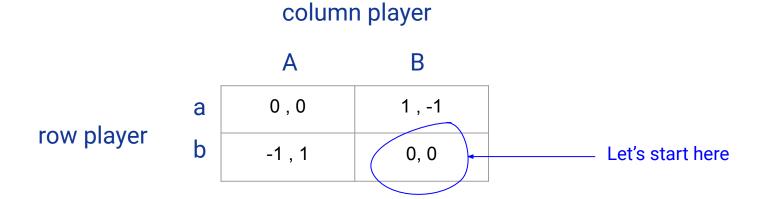
row player

a

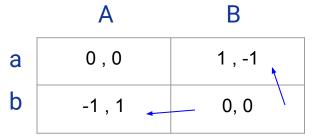
b

0,0	1 , -1
-1 , 1	0, 0

Α



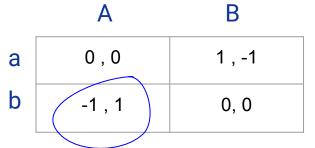
row player



Both players have *incentive to deviate* (assuming the opponent stays fixed)

column player

row player



column player

row player

A B

a 0,0 1,-1

b -1,1 0,0

column player

row player

(a,A) is a fixed point of this process

column player

row player

(a,A) is a fixed point of this process

$$\pi_i \in \Delta(\mathcal{A}_i)$$
, maximize $\mathbb{E}_{a \sim \pi}[u_i(a)]$

Let's Try Another....

column player

B

а

b

1 , -1	-1 , 1
-1 , 1	1, -1

A

row player

Let's Try Another....

column player

row player

A B

a 1,-1 -1,1

b -1,1 1,-1

Nash equilibrium

A Nash equilibrium is a **joint policy** π such that no player has incentive to deviate *unilaterally*.

Nash equilibrium: A Solution Concept

A Nash equilibrium is a **joint policy** π such that no player has incentive to deviate *unilaterally*.

$$\forall i \in \mathcal{N}, \pi_i \in BR(\pi_{-i})$$

Some Facts

- Nash equilibrium always exists in finite games
- Computing a Nash eq. is PPAD-Complete
 - One solution is to focus on tractable subproblems
 - Another is to compute approximations
- Assumes players are (unbounded) rational
- Assumes knowledge:
 - Utility / value functions
 - Rationality assumption is common knowledge

Α

Matching Pennies:
$$u_1(\cdot) = -u_2(\cdot)$$
 column player

row player

a 1,-1 -1,1 b -1,1 1,-1

B

Α

Matching Pennies:
$$u_1(\cdot) = -u_2(\cdot)$$
 column player

 $\max V$

row player

a 1,-1 -1,1 b -1,1 1,-1

B

Matching Pennies: $u_1(\cdot) = -u_2(\cdot)$ column player

 $\max V$

Α

В

 $\pi(a) - \pi(b) \ge V$ (vs. A)

row player

b

a

1 , -1	-1 , 1
-1 , 1	1 , -1

Matching Pennies: $u_1(\cdot) = -u_2(\cdot)$ column player

 $\max V$

В

-1, 1

1, -1

row player

a 1,-1 b -1,1

Α

$\pi(a) - \pi(b) \ge V$	(VS. I	$\mathbf{A})$
$-\pi(a) + \pi(b) \ge V$	(vs.]	3)

Α

Matching Pennies:
$$u_1(\cdot) = -u_2(\cdot)$$
 column player

row player

a	1 , -1	-1 , 1
b	-1 , 1	1 , -1

B

$\max V$

$$\pi(a) - \pi(b) \ge V \quad \text{(vs. A)}$$
$$-\pi(a) + \pi(b) \ge V \quad \text{(vs. B)}$$
$$\pi(a) + \pi(b) = 1$$
$$0 \le \pi(a), \pi(b) \le 1$$

Best Response Condition

For any (possibly stochastic) joint policy π_i ,

There exists a **deterministic** best response:

$$\pi_i^b \in BR(\pi_{-i})$$

Best Response Condition

For any (possibly stochastic) joint policy π_i ,

There exists a **deterministic** best response:

$$\pi_i^b \in BR(\pi_{-i})$$

<u>Proof</u>: Assume otherwise. The values of each deterministic policy (action) must be the same, by def. of BR. Then we can put full weight on any of them.

Α

Matching Pennies: $u_1(\cdot) = -u_2(\cdot)$ column player

row player

a	1 , -1	-1 , 1
b	-1 , 1	1 , -1

B

 $\max V$

$$\pi(a) - \pi(b) \ge V \quad \text{(vs. A)}$$
$$-\pi(a) + \pi(b) \ge V \quad \text{(vs. B)}$$
$$\pi(a) + \pi(b) = 1$$
$$0 \le \pi(a), \pi(b) \le 1$$

This is a Linear Program!

- Solvable in polynomial time (!)
 - Easy to apply off-the-shelf solvers
- Will find one solution
- Matching Pennies: $\pi(a) = \pi(b) = \frac{1}{2}, V = 0$

Minimax

John von Neumann 1928

<u>Max-min</u>: P1 looks for a π_1 such that

$$v_1 = \max_{\pi_1} \min_{\pi_2} u_1(\pi_1, \pi_2)$$

Min-max: P1 looks for a π_1 such that

$$v_1 = \min_{\pi_2} \max_{\pi_1} u_1(\pi_1, \pi_2)$$

In two-player, zero-sum these are the same!

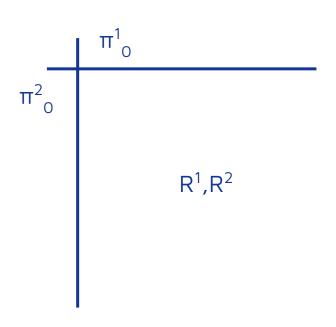
---> The Minimax Theorem

Consequences of Minimax

The optima
$$\pi^*=(\pi_1^*,\pi_2^*)$$

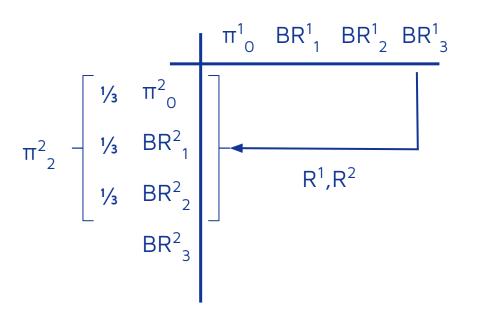
- These exist! (They sometimes might be stochastic.)
- Called a minimax-optimal joint policy. Also, a Nash equilibrium.
- They are interchangeable:
- $\forall \pi^*, \pi^{*\prime} \Rightarrow (\pi_1^*, \pi_2^{*\prime}), (\pi_1^{*\prime}, \pi_2^*)$ also minimax-optimal
- Each policy is a best response to the other.

• Fictitious Play:



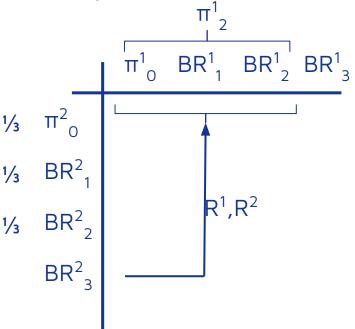
• Start with an arbitrary policy per player (π^1_0, π^2_0) ,

Fictitious Play:



- Start with an arbitrary policy per player (π^1_0, π^2_0) ,
 - Then, play best response against a uniform distribution over the past policy of the opponent (BR¹,BR²,).

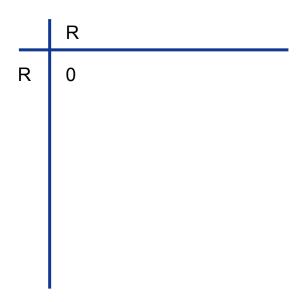
Fictitious Play:



- Start with an arbitrary policy per player (π^1_0, π^2_0) ,
 - Then, play best response against a uniform distribution over the past policy of the opponent (BR¹_n,BR²_n).

Fictitious Play:

Start with (R, P, S) = (1, 0, 0), (1, 0, 0)



Fictitious Play:

	R	Р	
R	0	1	
Р	-1	0	

- Start with (R, P, S) = (1, 0, 0), (1, 0, 0)
- Iteration 1:

$$\circ$$
 BR¹₁,BR²₁ = P, P

 $(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}, 0)$

Fictitious Play:

	R	Р	Р		
R	0	1	1		
Р	-1	0	0		
Р	-1	0	0		

- Start with (R, P, S) = (1, 0, 0), (1, 0, 0)
- Iteration 1:

$$\circ$$
 BR¹₁,BR²₁ = P, P

- $(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}, 0)$
- Iteration 2:

$$\circ$$
 BR¹₂,BR²₂ = P, P

(1/3, 2/3, 0), (1/3, 2/3, 0)

Fictitious Play:

	R	Р	Р	S	
R	0	1	1	-1	
Р	-1	0	0	1	
Р	-1	0	0	1	
S	1	-1	-1	0	

- Start with (R, P, S) = (1, 0, 0), (1, 0, 0)
- Iteration 1:

$$\circ$$
 BR¹₁,BR²₁ = P, P

- $(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}, 0)$
- Iteration 2:

$$\circ$$
 BR¹₂,BR²₂ = P, P

- (1/3, 2/3, 0), (1/3, 2/3, 0)
- Iteration 3:

$$\circ$$
 BR¹₃,BR²₃ = S, S

Fictitious Play:

	R	Р	Р	S	S	
R	0 -1 -1 1	1	1	-1	-1	
Р	-1	0	0	1	1	
Р	-1	0	0	1	1	
S S	1	-1	-1	0	0	
S	1	-1	-1	0	0	

- Start with (R, P, S)= (1, 0, 0), (1, 0, 0)
- Iteration 1:

$$\circ$$
 BR¹₁,BR²₁ = P, P

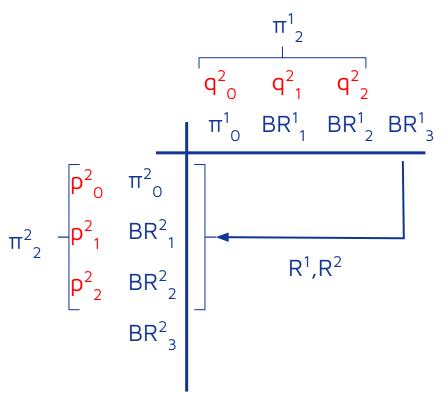
- $(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}, 0)$
- Iteration 2:

$$\circ$$
 BR¹₂,BR²₂ = P, P

- (1/3, 2/3, 0), (1/3, 2/3, 0)
- Iteration 3:

$$\circ$$
 BR¹₃,BR²₃ = S, S

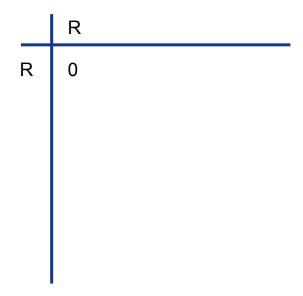
double oracle [HB McMahan 2003]:



- Start with an arbitrary policy per player (π_0^1, π_0^2) ,
 - Compute (pⁿ,qⁿ) by solving the game at iteration n
 - Then, best response against (pⁿ,qⁿ) and get a new best response (BR¹_n,BR¹_n).

double oracle:

Start with (R, P, S) = (1, 0, 0), (1, 0, 0)



double oracle:

	R	Р		
R	0	1		
Р	-1	0		

- Start with (R, P, S)= (1, 0, 0), (1, 0, 0)
- Iteration 1:

$$\circ$$
 BR¹₁,BR²₁ = P, P

Solve the game : (0, 1, 0), (0, 1,0)

double oracle:

	R	Р	S		
R	0	1	-1		
Р	-1	0	1		
S	1	-1	0		

- Start with (R, P, S)= (1, 0, 0), (1, 0, 0)
- Iteration 1:

$$\circ$$
 BR¹₁,BR²₁ = P, P

- Solve the game : (0, 1, 0), (0, 1,0)
- Iteration 2:

$$\circ$$
 BR¹₂,BR²₂ = S, S

Cooperative Games

a

b

C

$$u_i(\cdot) = u_j(\cdot)$$

column player

row player

A B

1, 1	0, 0	0, 0
0, 0	2, 2	0, 0

Cooperative Games

$$u_i(\cdot) = u_j(\cdot)$$

column player

row player

		Ь	O
а	1, 1	0, 0	0, 0
b	0, 0	2, 2	0, 0
С	0, 0	0, 0	(5, 5)

These are all Nash equilibria!

General-Sum Games

No constraints on utilities!

column player

Α

В

row player

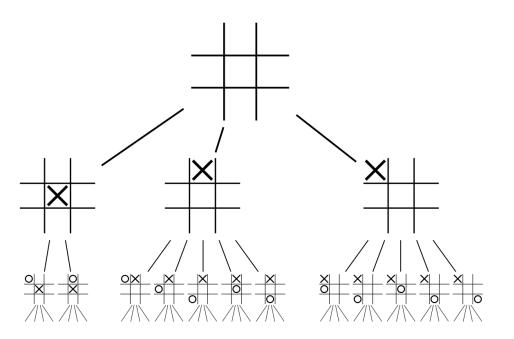
a b

2.2	0.0
3, 2	0, 0
0, 0	2, 3

Sequential Setting: Extensive-Form Games

What about sequential games...?

Perfect Information Games



(Finite) Perfect Information Games: Model

- Start with an episodic MDP
- Add a player identity function:

$$\tau(s) \in \mathcal{N} \cup \{s\}$$

• Define rewards per player:

$$r_i(s, a, s')$$
 for $i \in \mathcal{N}$

ullet (Similarly for returns: $G_{t,i}$ is the return to player i from S_t)

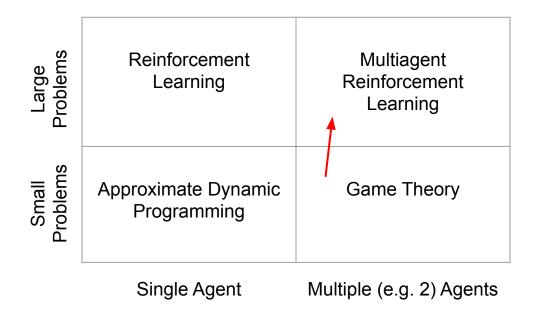
Simultaneous move node (many players

play simultaneously)

20

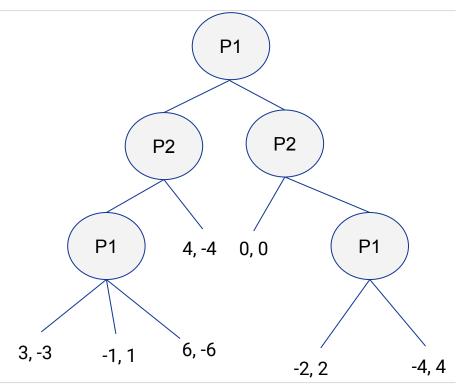
Basic Formalisms & Algorithms

Foundations of RL



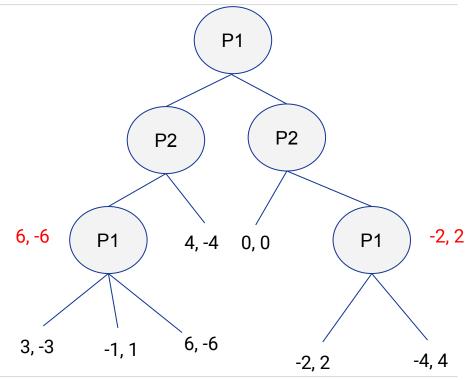
Backward Induction

Solving a *turn-taking* perfect information game



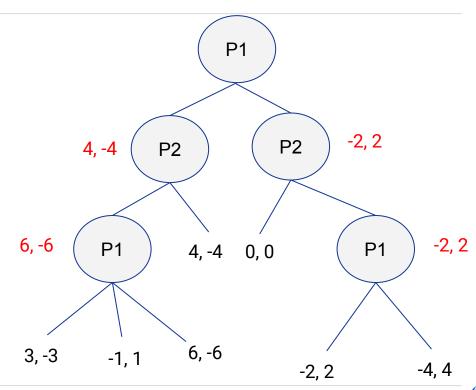
Backward Induction

Solving a *turn-taking* perfect information game



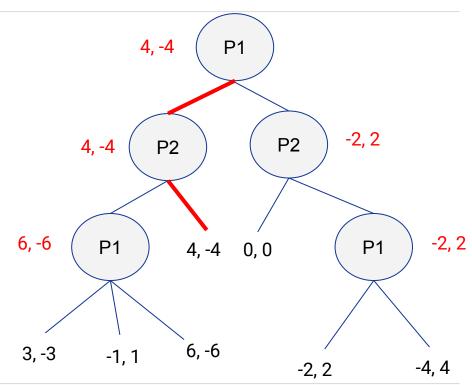
Backward Induction

Solving a *turn-taking* perfect information game



Backward Induction

Solving a *turn-taking* perfect information game



Intro to RL: Tabular Approximate Dyn. Prog.

```
Value iteration
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)
Repeat
   \Delta \leftarrow 0
   For each s \in S:
        v \leftarrow V(s)
        V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
        \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi \approx \pi_*, such that
   \pi(s) = \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
```


Turn-Taking 2P Zero-sum Perfect Info. Games

- Player to play at s: $\tau(s)$
- Reward to player i: r_i
- Subset of legal actions LegalActions(s)
- Often assume episodic and $\gamma=1$

Values of a state to player i: $V_i(s)$ Identities:

$$\forall s, a, s' : r_1 = -r_2, \quad V_1(s) = -V_2(s)$$

2P Zero-Sum Perfect Info. Value Iteration

```
Value iteration
Initialize array V_i arbitrarily (e.g., V_i(s) = 0 for all s \in S^+)
Repeat
                                             Let i = t(s)
    \Delta \leftarrow 0
    For each s \in S:
         v \leftarrow V(s)
         V_i(s) \leftarrow \max_a \sum_{s',r_i} p(s',r_i|s,a) \left[r_i + \gamma V_i(s')\right]
         \Delta \leftarrow \max(\Delta, |v - V_i(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi \approx \pi_*, such that
   \pi(s) = \operatorname{arg\,max}_a \sum_{s',r_i} p(s',r_i|s,a) \left[r_i + \gamma V_i(s')\right]
```


Minimax

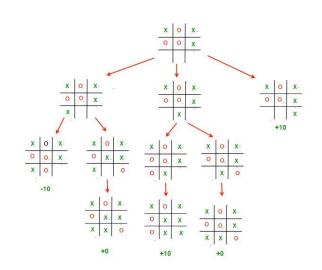
A.K.A. Alpha-Beta, Backward Induction, Retrograde Analysis, etc...

Start from search state S,

Compute a depth-limited approximation:

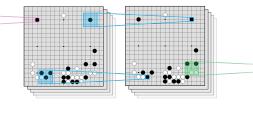
$$V_{i,d}(s) = \begin{cases} u_i(s) & \text{if } s \text{ is terminal,} \\ h_i(s) & \text{if } d = 0, \\ \sum_{s'} p(s, a, s') V_{i,d-1}(s') & \text{otherwise.} \end{cases}$$

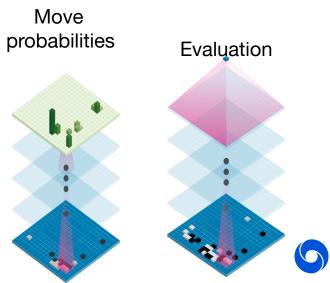
---> Minimax Search



Two-Player Zero-Sum Policy Iteration

- Analogous to adaptation of value iteration
- Foundation of AlphaGo, AlphaGo Zero, AlphaZero
 - Better policy improvement via MCTS
 - Deep network func. approximation
 - Policy prior cuts down breadth
 - Value network cuts the depth





2P Zero-Sum Games with Simultaneous Moves

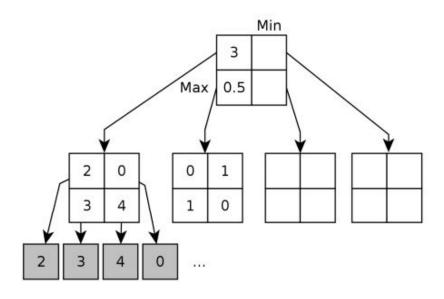


Image from Bozansky et al. 2016

Markov Games

"Markov Soccer"

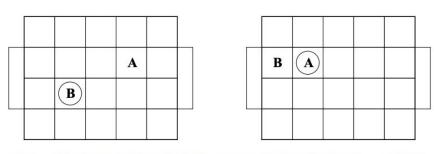


Figure 2: An initial board (left) and a situation requiring a probabilistic choice for A (right).

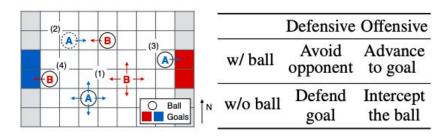


Figure 3. Left: Illustration of the soccer game. Right: Strategies of the hand-crafted rule-based agent.

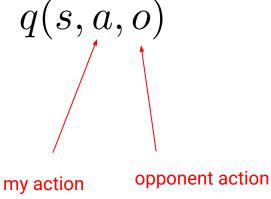
Littman '94 He et al. '16

Also: Lagoudakis & Parr '02, Uther & Veloso '03, Collins '07

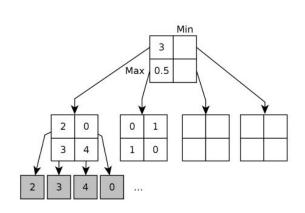
Value Iteration for Zero-Sum Markov Games

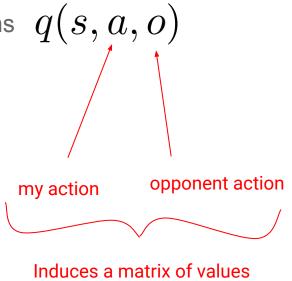
```
Value iteration
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)
Repeat
   \Delta \leftarrow 0
                                             \min_{s \in \mathbb{N}} \max_{s \in \pi(s), s'} [r_1(s, a, s') + \gamma V_1(s')]
   For each s \in S:
                                             \pi_2(s) \pi_1(s)
        v \leftarrow V(s)
        V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
        \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi \approx \pi_*, such that
                                                                  computed above
  \pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
```


1. Start with arbitrary joint value functions $\,q(s,a,o)\,$



1. Start with arbitrary joint value functions $\,q(s,a,o)\,$





- 1. Start with arbitrary joint value functions $\,q(s,a,o)\,$
- 2. Define policy π as in value iteration (by solving an LP)

- 1. Start with arbitrary joint value functions $\,q(s,a,o)\,$
- 2. Define policy π as in value iteration (by solving an LP)
- 3. Generate trajectories of tuple (s,a,o,s') using behavior policy $\pi'=\epsilon \mathrm{UNIF}(\mathcal{A})+(1-\epsilon)\pi$

- Start with arbitrary joint value functions q(s, a, o)
- Define policy π as in value iteration (by solving an LP)
- Generate trajectories of tuple (s, a, o, s')behavior policy $\pi' = \epsilon U NIF(A) + (1 - \epsilon)\pi$
- 4. Update $q(s, a, o) = (1 \alpha)q(s, a, o) + \alpha(r(s, a, o, s') + \gamma v(s'))$

Follow-ups to Minimax Q:

- Friend-or-Foe Q-Learning (Littman '01)
- Correlated Q-learning (Greenwald & Hall '03)
- Nash Q-learning (Hu & Wellman '03)
- Coco-Q (Sodomka et al. '13)

Function approximation:

LSPI for Markov Games (Lagoudakis & Parr '02)

Nash Convergence of Gradient Dynamics in General-Sum Games

Satinder Singh AT&T Labs Florham Park, NJ 07932 baveja@research.att.com Michael Kearns
AT&T Labs
Florham Park, NJ 07932
mkearns@research.att.com

Yishay Mansour
Tel Aviv University
Tel Aviv, Israel
mansour@math.tau.ac.il

Singh, Kearns & Mansour '03, Infinitesimal Gradient Ascent (IGA)

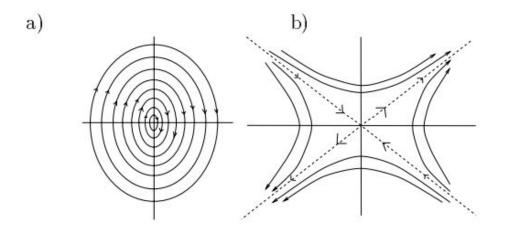


Figure 1: The general form of the dynamics: a) when U has imaginary eigenvalues and b) when U has real eigenvalues.

Image from Singh, Kearns, & Mansour '03

Formalize optimization as a dynamical system:

policy gradients

Analyze using well-established techniques

→ Evolutionary Game Theory: replicator dynamics

$$\dot{\pi}_t(a) = \pi_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

time derivative

→ Evolutionary Game Theory: replicator dynamics

$$\dot{\pi}_t(a) = \pi_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

time derivative

utility of action a against the joint policy / population of other players

→ Evolutionary Game Theory: replicator dynamics

$$\dot{\pi}_t(a) = \pi_t(a) \left[u(a, \boldsymbol{\pi}_t) - \bar{u}(\boldsymbol{\pi}_t) \right]$$

time derivative

Expected / average utility of the joint policy / population

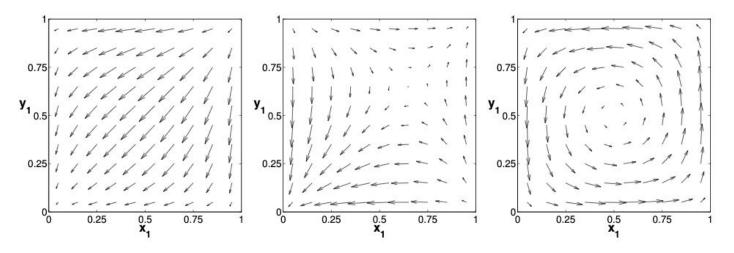


Figure 4: The replicator dynamics, plotted in the unit simplex, for the prisoner's dilemma (left), the stag hunt (center), and matching pennies (right).

Bloembergen et al. 2015

WoLF: Win or Learn Fast. (Bowling & Veloso '01).

IGA is rational but not convergent!

- Rational: opponents converge to a fixed joint policy
 - → learning agent converges to a best response of joint policy
- Convergent: learner necessarily converges to a fixed policy

Use specific *variable learning rate* to ensure convergence (in 2x2 games)

Follow-ups to policy gradient and replicator dynamics:

- WoLF-IGA, WoLF-PHC
- WoLF-GIGA (Bowling '05)
- Weighted Policy Learner (Abdallah & Lesser '08)
- Infinitesimal Q-learning (Wunder et al. '10)
- Frequency-Adjusted Q-Learning (Kaisers et al. '10, Bloembergen et al. '11)
- Policy Gradient Ascent with Policy Prediction (Zhang & Lesser '10)
- Evolutionary Dynamics of Multiagent Learning (Bloembergen et al. '15)

So.....

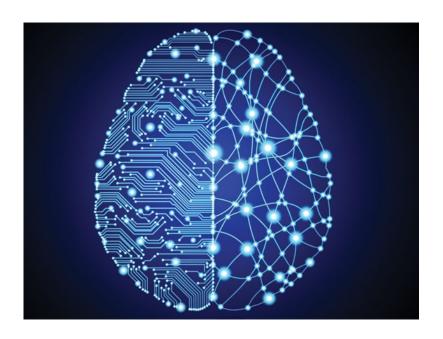
Why call it "the first era"?

So.....

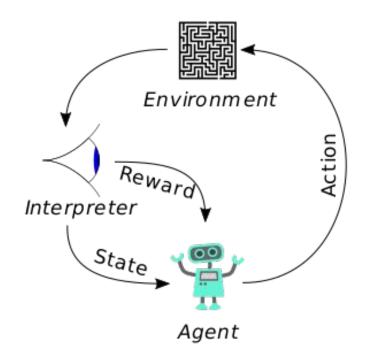
Why call it "the first era"?

Scalability was a major problem.

Second Era: Deep Learning meets Multiagent RL



Source: spectrum.ieee.org

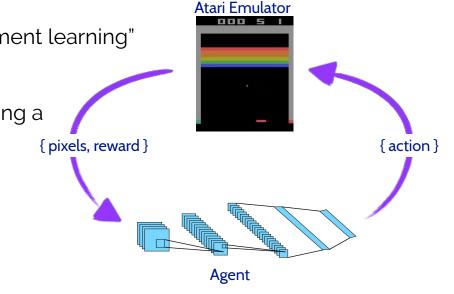


Source: wikipedia.org

Deep Q-Networks (DQN) Mnih et al. 2015

"Human-level control through deep reinforcement learning"

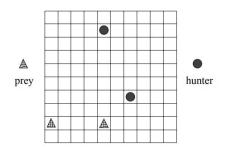
- Represent the action value (Q) function using a convolutional neural network.
- Train using end-to-end Q-learning.
- Can we do this in a stable way?



Independent Q-Learning Approaches

Independent Q-learning [Tan, 1993]

$$Q(x, a) \leftarrow Q(x, a) + \beta(r + \gamma V(y) - Q(x, a))$$
$$V(x) = \max_{b \in actions} Q(x, b)$$

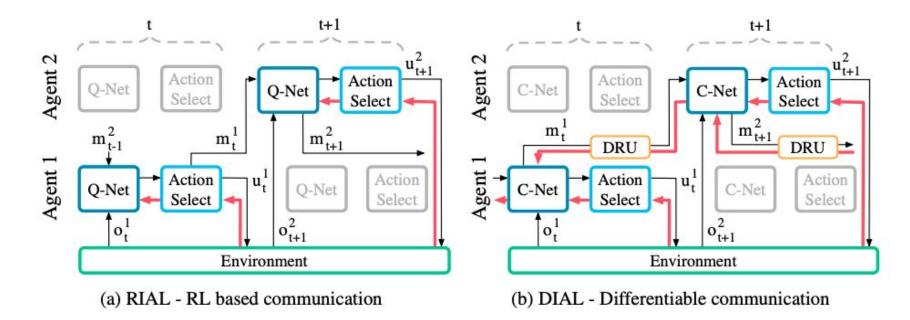


N-of-prey/N-of-hunters	1/1	1/2
Random hunters	123.08	56.47
Learning hunters	25.32	12.21

Table 1: Average Number of Steps to Capture a Prey

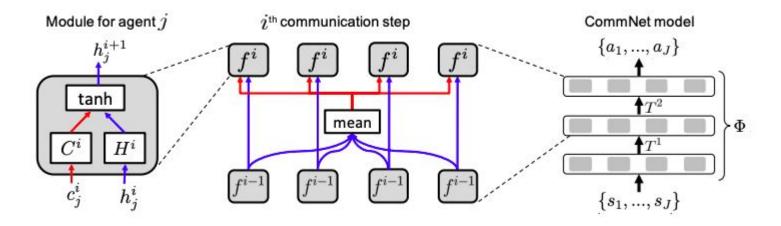
Independent Deep Q-Networks [Tampuu et al., 2015] Convolution Fully connected Fully connected Evolution of O-value Right player Left player Number of frames played

Learning to Communicate



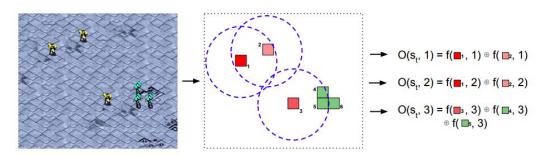
Foerster et al. '16

Learning to Communicate



Sukhbaatar et al. '16

Cooperative Multiagent Tasks

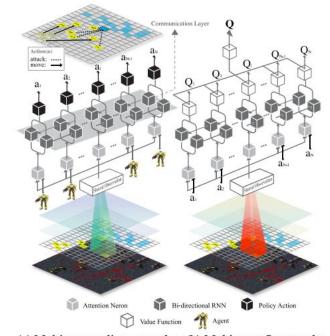


Foerster et al. '18

Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks

Nicolas Usunier*, Gabriel Synnaeve*, Zeming Lin, Soumith Chintala Facebook AI Research usunier,gab,zlin,soumith@fb.com

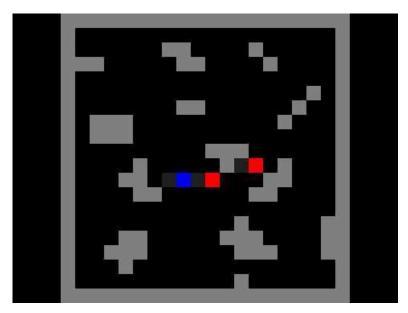
November 29, 2016



(a) Multiagent policy networks (b) Multiagent Q networks

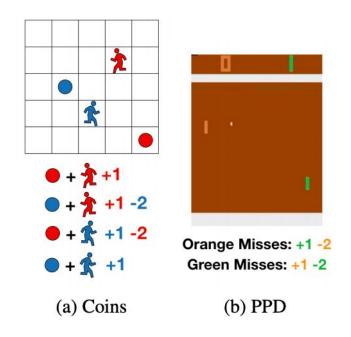
BIC-Net (Peng et al.'17)

Sequential Social Dilemmas



https://www.youtube.com/watch?v=0kalqz6AvwE

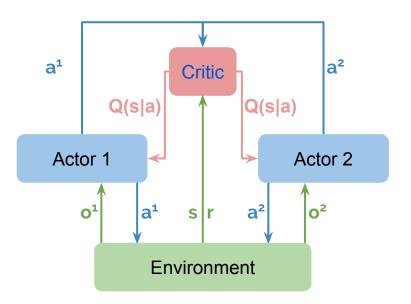
Leibo et al. '17



Lerer & Peyskavich '18

Centralized Critic Decentralized Actor Approaches

- **Idea:** reduce nonstationarity & credit assignment issues using a central critic
- Examples: MADDPG [Lowe et al., 2017] & COMA [Foerster et al., 2017]
- Apply to both cooperative and competitive games



Centralized critic trained to minimize loss:

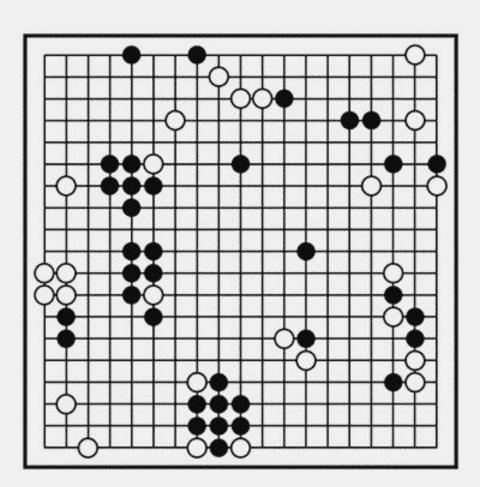
$$\mathcal{L}(\theta_i) = \mathbb{E}_{\mathbf{x}, a, r, \mathbf{x}'}[(Q_i^{\boldsymbol{\pi}}(\mathbf{x}, a_1, \dots, a_N) - y)^2],$$
$$y = r_i + \gamma Q_i^{\boldsymbol{\pi}'}(\mathbf{x}', a_1', \dots, a_N')\big|_{a_j' = \boldsymbol{\pi}_j'(o_j)}$$

Decentralized actors trained via policy gradient:

$$abla_{\theta_i} J(\theta_i) = \mathbb{E}_{s \sim p^{\pmb{\mu}}, a_i \sim \pmb{\pi}_i} [\nabla_{\theta_i} \log \pmb{\pi}_i(a_i|o_i) Q_i^{\pmb{\pi}}(\mathbf{x}, a_1, ..., a_N)]$$

Actor

• AlphaGo

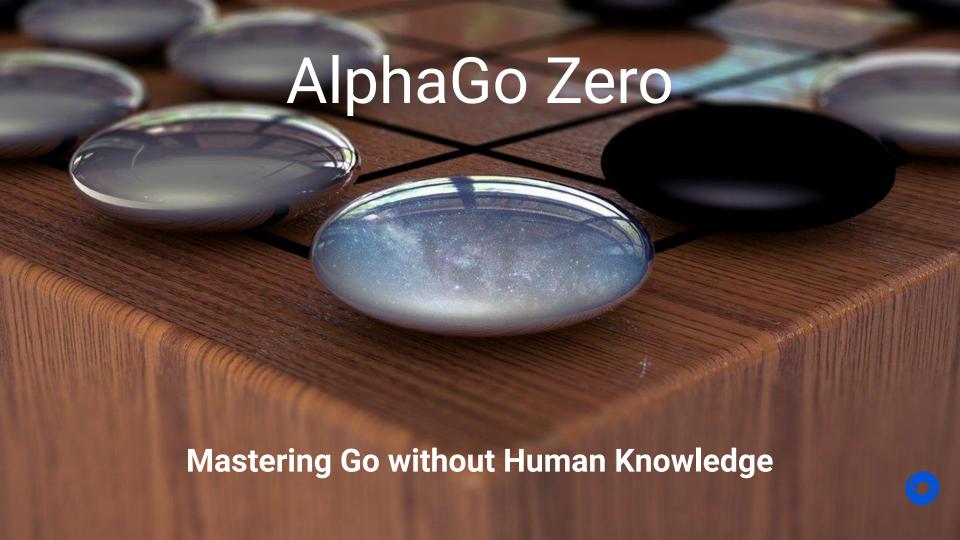


AlphaGo vs. Lee Sedol

Lee Sedol (9p): winner of 18 world titles

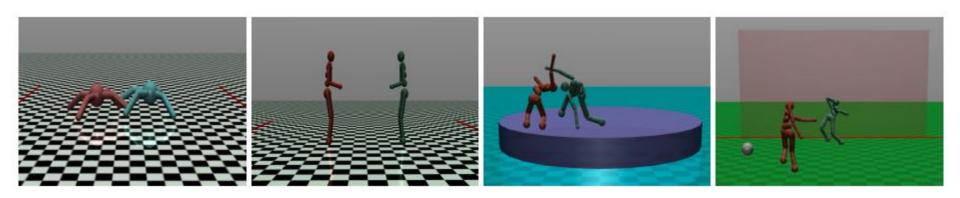
Match was played in Seoul, March 2016

AlphaGo won the match 4-1



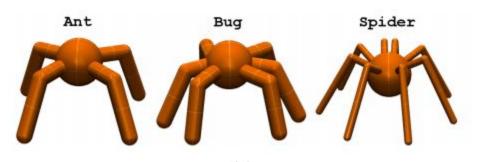
AlphaZero: One Algorithm, Three Games

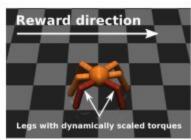
3D Worlds

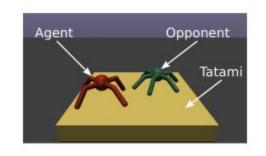


Bansal et al. '18

Meta-Learning in RoboSumo







Al-Shedivat et al. '17

Emergent Coordination Through Competition

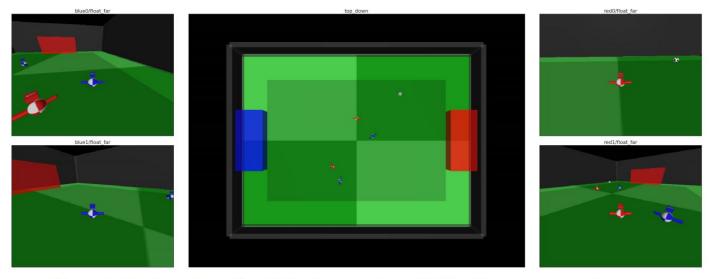
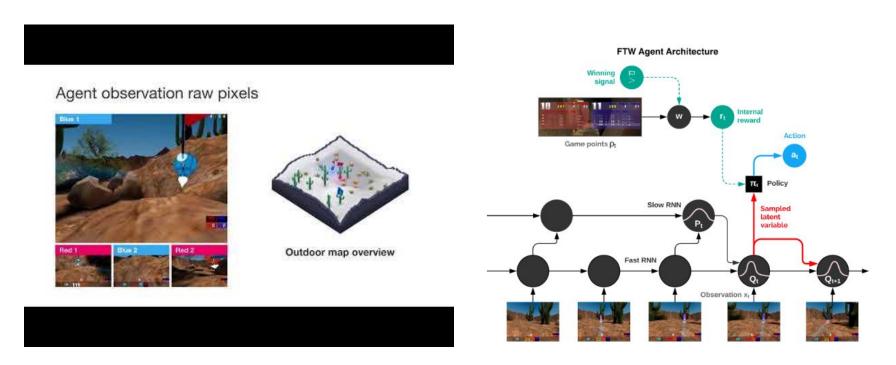


Figure 1: Top-down view with individual camera views of 2v2 multi-agent soccer environment.

Liu et al. '19 and http://git.io/dm_soccer

Capture-the-Flag (Jaderberg et al. '19)

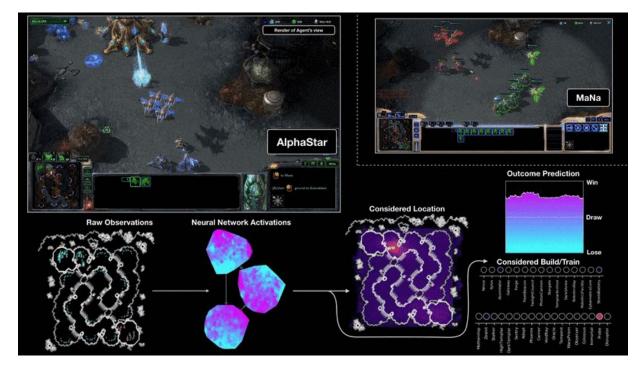


https://deepmind.com/blog/capture-the-flag-science/

Dota 2: OpenAl Five

https://openai.com/blog/openai-five-finals/

AlphaStar (Vinyals et al. '19)



https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning

Deep Multiagent RL Survey

A Survey and Critique of Multiagent Deep Reinforcement Learning[☆]

Pablo Hernandez-Leal, Bilal Kartal and Matthew E. Taylor {pablo.hernandez,bilal.kartal,matthew.taylor}@borealisai.com

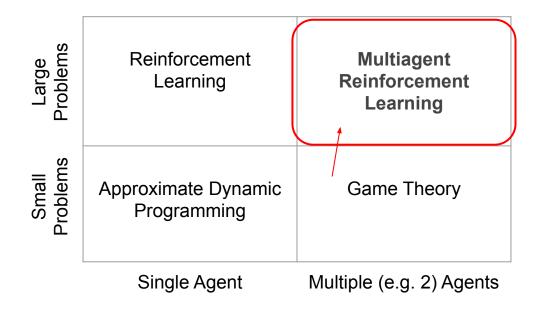
Borealis AI Edmonton, Canada

https://arxiv.org/abs/1810.05587

201

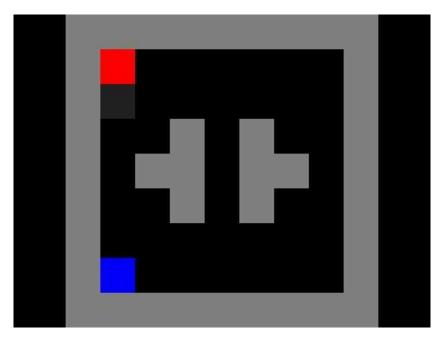
Quick Sampler: Partial Observability

Foundations of Multiagent RL

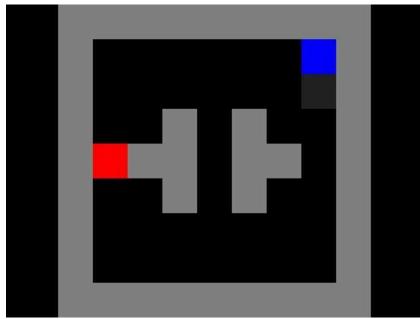


Independent Deep Q-networks

(See Lanctot et al. '17)



Independent learners who learned together

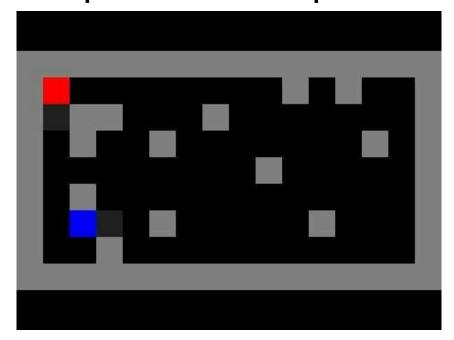


https://www.youtube.com/watch?v=jOjwOkCM_i8

Independent learners who learned using the same algorithm, same architecture, same hyperparameters, but different seed

Independent Deep Q-networks

(See Lanctot et al. '17)



https://www.youtube.com/watch?v=Z5cplG3GsLw

Independent learners who learned together

https://www.youtube.com/watch?v=zilUohXvGK4

Independent learners who learned using the same algorithm, same architecture, same hyperparameters, but different seed

Fictitious Self-Play [Heinrich et al. '15, Heinrich & Silver 2016]

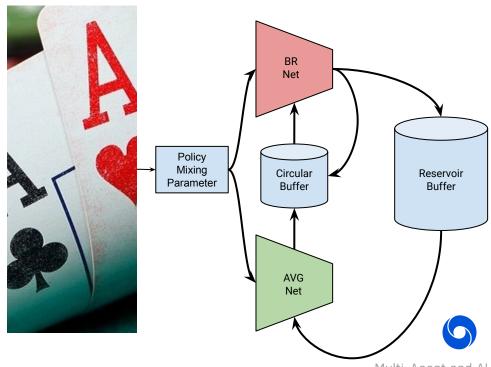
- **Idea:** Fictitious self-play (FSP) + reinforcement learning
- Update rule in sequential setting *equivalent* to standard fictitious play (matrix game)
- Approximate NE via two neural networks:

1. Best response net (BR):

- Estimate a best response
- o Trained via RL

2. Average policy net (AVG):

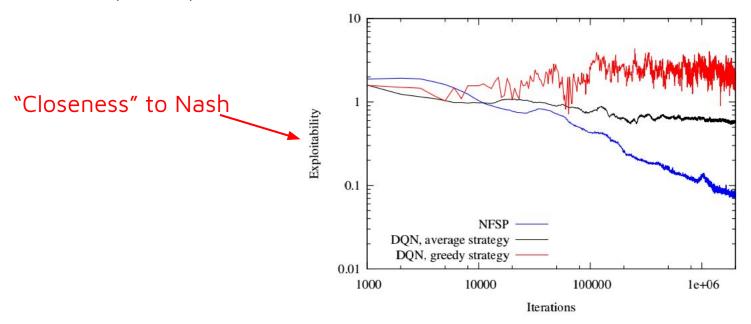
- Estimate the time-average policy
- Trained via supervised learning



Multi-Agent and Al

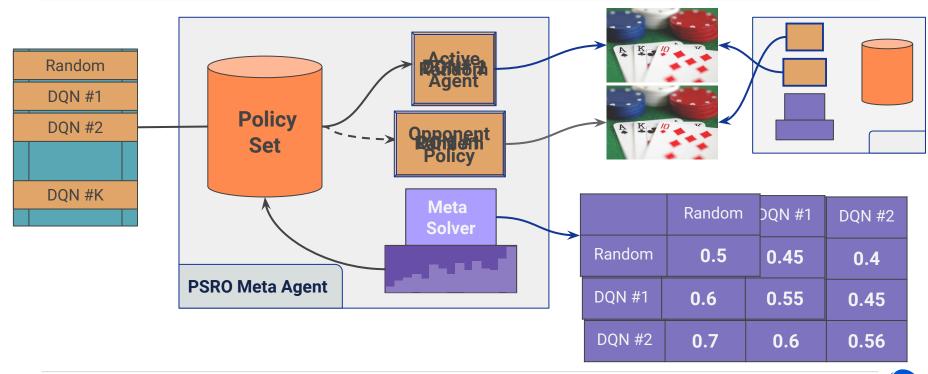
Neural Fictitious Self-Play [Heinrich & Silver 2016]

Leduc Hold'em poker experiments:



- 1st scalable end-to-end approach to learn approximate Nash equilibria w/o prior domain knowledge
 - Competitive with superhuman computer poker programs when it was released

Policy-Space Response Oracles (Lanctot et al. '17)



Quantifying "Joint Policy Correlation"

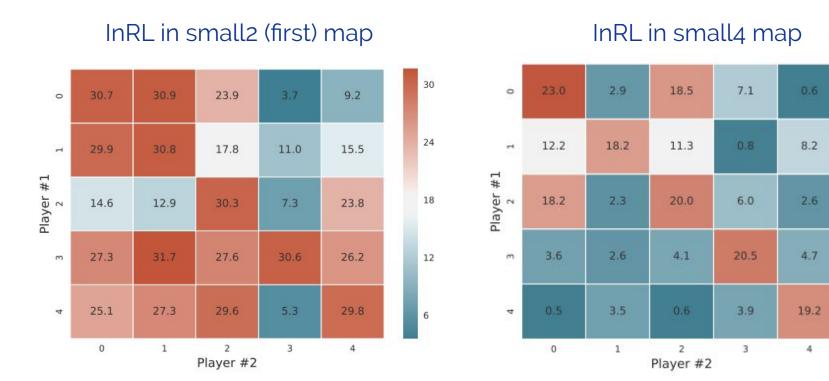
In RL:

- Each player uses optimizes independently
- After many steps, joint policy (π_1, π_2) co-learned for players 1 & 2

Computing **JPC:** start **5 separate instances of the** *same experiment*, with

- Same hyper-parameter values
- Differ only by seed (!)
- Reload all 25 combinations and play π_1^{i} with π_2^{j} for instances i, j

Joint Policy Correlation in Independent RL



20

16

12

JPC Results - Laser Tag

Game	Diag	Off Diag	Exp. Loss
LT small2	30.44	20.03	34.2 %
LT small3	23.06	9.06	62.5 %
LT small4	20.15	5.71	71.7 %
Gathering field	147.34	146.89	none
Pathfind merge	108.73	106.32	none

Exploitability Descent (Lockhart et al. '19)

Algorithm 2: Exploitability Descent (ED)

```
input:\boldsymbol{\pi}^0 — initial joint policy

for t \in \{1, 2, \cdots\} do

for i \in \{1, \cdots, n\} do

Compute a best response \boldsymbol{b}_i^t(\boldsymbol{\pi}_{-i}^{t-1})

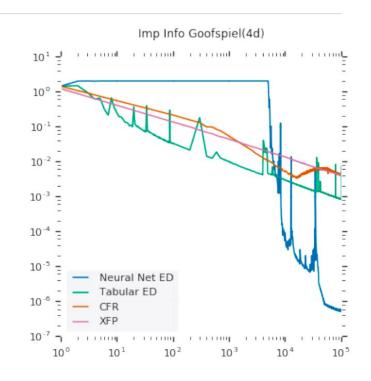
for i \in \{1, \cdots, n\}, s \in \mathcal{S}_i do

Define \boldsymbol{b}_{-i}^t = \{\boldsymbol{b}_j^t\}_{j \neq i}

Let \mathbf{q}^b(s) = \text{VALUESVSBRS}(\boldsymbol{\pi}_i^{t-1}(s), \boldsymbol{b}_{-i}^t)

\boldsymbol{\pi}_i^t(s) = \text{GRADASCENT}(\boldsymbol{\pi}_i^{t-1}(s), \alpha^t, \mathbf{q}^b(s))
```

- A FP-like algorithm conv. without averaging!
- Amenable to function approximation



Counterfactual Regret Minimization (CFR)

Zinkevich et al. '08

- Algorithm to compute approx
 Nash eq. In 2P zero-sum games
- Hugely successful in Poker Al
- Size traditionally reduced apriori based on expert knowledge
- Key innovation: counterfactual values: $v_i^c(\pi, s, a)$ $v_i^c(\pi, s)$

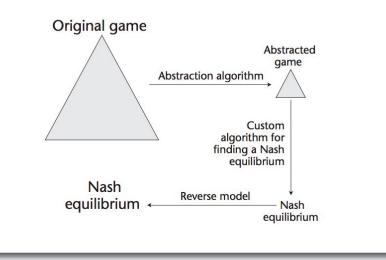


Figure 1. Current Paradigm for Solving Large Incomplete-Information Games.

Image form Sandholm '10

CFR is policy iteration!

- Policy evaluation is analogous
- Policy improvement: use regret minimization algorithms
 - Average strategies converge to Nash in self-play
- Convergence guarantees are on the average policies

(Moravcik et al. '17)

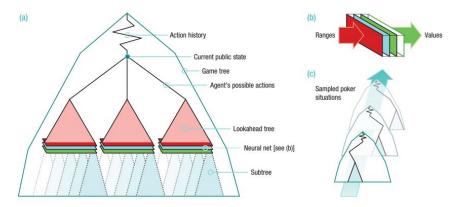
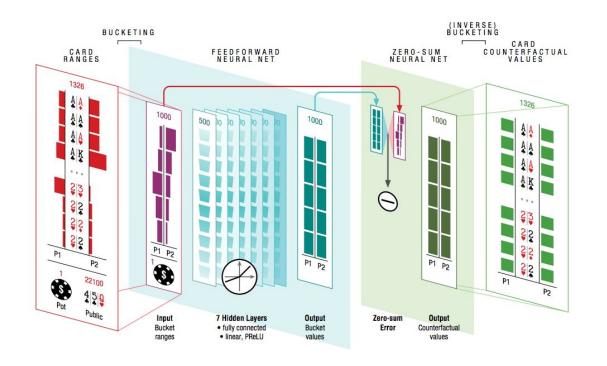


Figure 2: DeepStack overview. (a) DeepStack re-solves for its action at every public state it is to act, using a depth limited lookahead where subtree values are computed using a trained deep neural network (b) trained before play via randomly generated poker situations (c).

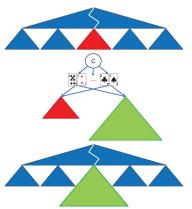
(Moravcik et al. '17)



Libratus (Brown & Sandholm '18)

RESEARCH ARTICLE

Superhuman AI for heads-up no-limit poker: Libratus beats top professionals



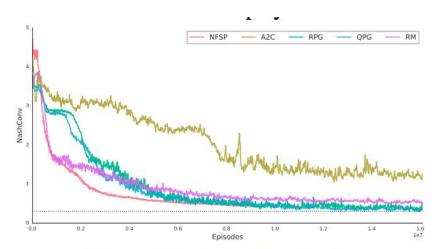
Policy Gradient Algorithms

Parameterized policy π_{θ} with parameters θ (e.g. a neural network) Define a score function $J(\pi_{\theta}) = v_{\pi}(s_0) = \mathbb{E}_{\pi}[G_0]$ Main idea: do gradient ascent on J.

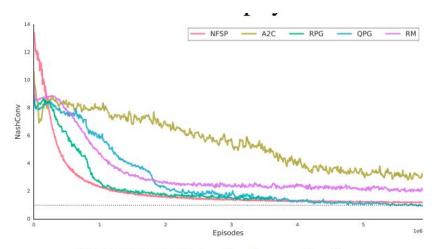
- 1. **REINFORCE** (Williams '92, see RL book ch. 13) + PG theorem: you can do this via estimates from sample trajectories.
- 2. Advantage Actor-Critic (A2C) (Mnih et al '16): you can use deep networks to estimate the policy and baseline value v(s)

Regret Policy Gradients (Srinivasan et al. '18)

- Policy gradient is doing a form of CFR minimization!
- Several new policy gradient variants inspired connection to regret



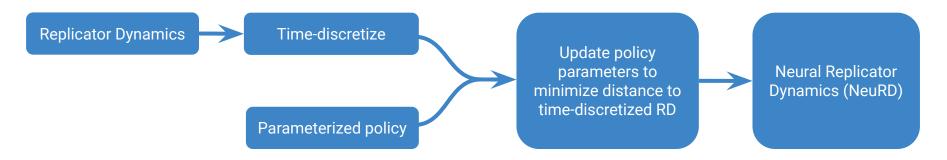
NASHCONV in 2-player Leduc

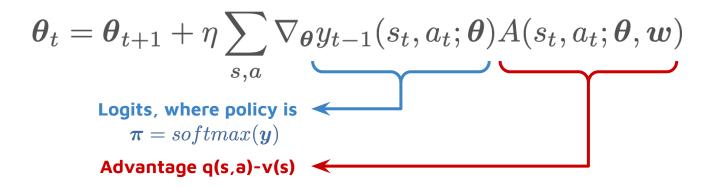


NASHCONV in 3-player Leduc

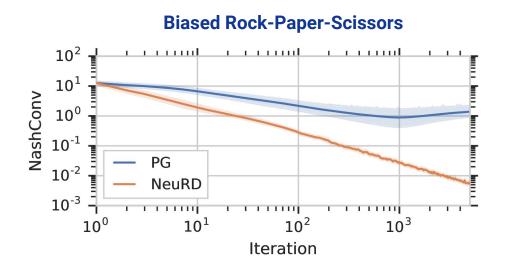
Hedging Policy Gradients (Previously "Neural Replicator Dynamics" / NeuRD)

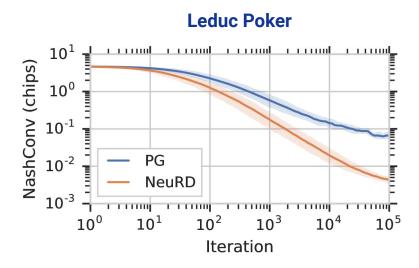
Omidshafiei, Hennes, Morrill et al. '19





NeuRD: Results

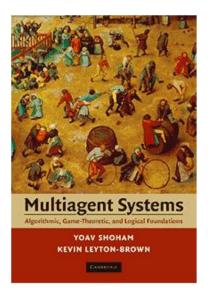




General MARL Wrap-up

Shoham & Leyton-Brown '09

Main Page Table of Contents Instructional Resources Errata eBook Download new!



Multiagent Systems

Algorithmic, Game-Theoretic, and Logical Foundations

Yoav Shoham Stanford University Kevin Leyton-Brown University of British Columbia

Cambridge University Press, 2009 Order online: amazon.com.

masfoundations.org

Surveys and Food for Thought

- If multi-agent learning is the answer, what is the question?
 - Shoham et al. '06
 - Hernandez-Leal et al. '19
- A comprehensive survey of MARL (Busoniu et al. '08)
- Game Theory and Multiagent RL (Nowé et al. '12)
- Study of Learning in Multiagent Envs (Hernandez-Leal et al. '17)

The Hanabi Challenge

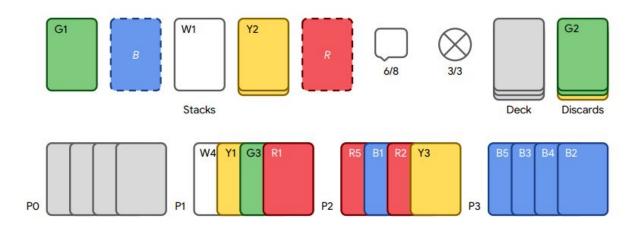


Figure 1: Example of a four player Hanabi game from the point of view of player 0. Player 1 acts after player 0 and so on.

Bard et al. '19

Also Competition at IEEE Cog (<u>ieee-cog.org</u>)

AAAI 2020 Workshop on RL in Games

AAAI19-RLG Summary:

- 39 accepted papers
 - 4 oral presentations
 - o 35 posters
- 1 "Mini-Tutorial"
- 3 Invited Talks
- Panel & Discussion

http://aaai-rlg.mlanctot.info/

3

Adapting RL Algorithms to Zero-Sum Games

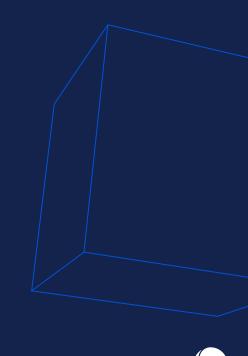
Plan: MARL in Zero-Sum Games

- 1. Worked out examples
 - a. Adapting Q-learning
 - b. Counterfactual Regret Minimization

- 2. Three important sub-topics:
 - a. Expected values vs. counterfactual values
 - b. Monte Carlo CFR: sample-based CFR
 - c. Search in Imperfect Information games

3.12

Tabular Q-learning Exercise



Tabular Q-Learning Exercise

Please refer to handout.

- Either on your own or in small groups, try to answer **Q1**. [5 min]
- Then, now try to answer **Q2.** [5 min]

Let's discuss the answers.

Tabular Q-learning Exercise

Suppose $\alpha=0.1$, Q(s, a) = 0 for all s,a , and the following episodes are played by the agent(s):

- O, 4, 8, 5, 2, 1, 7, 3
- 2, 1, 0, 4, 7, 5, 8, 6, 3

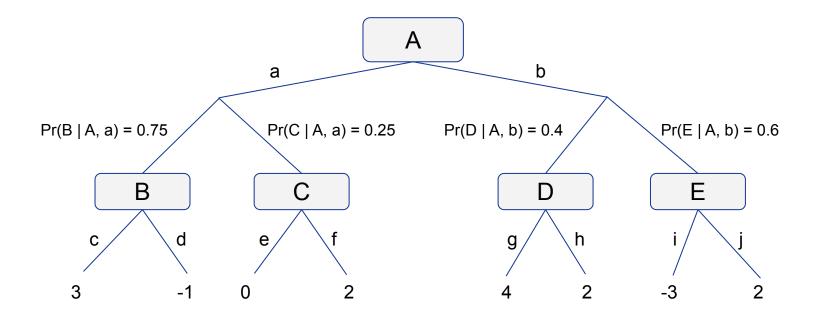
0	1	2
3	4	5
6	7	8

- Which state(s) have actions with non-zero Q-values?
- What are those action(s)?

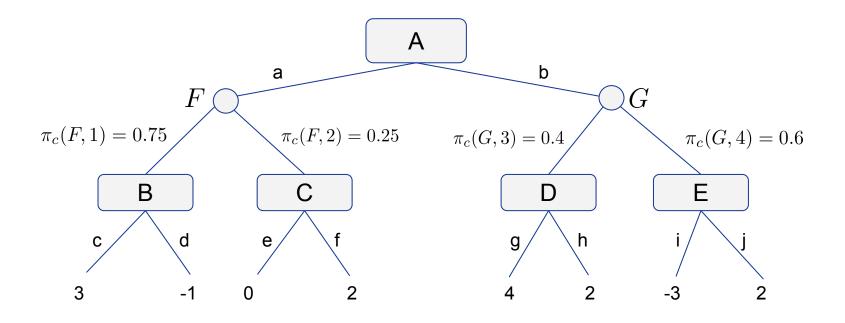
3.11

Counterfactual Regret Minimization Exercise

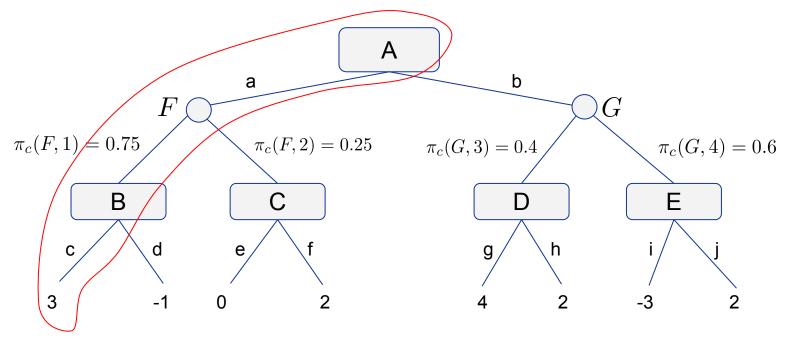
A simple MDP



A simple MDP Multiagent System

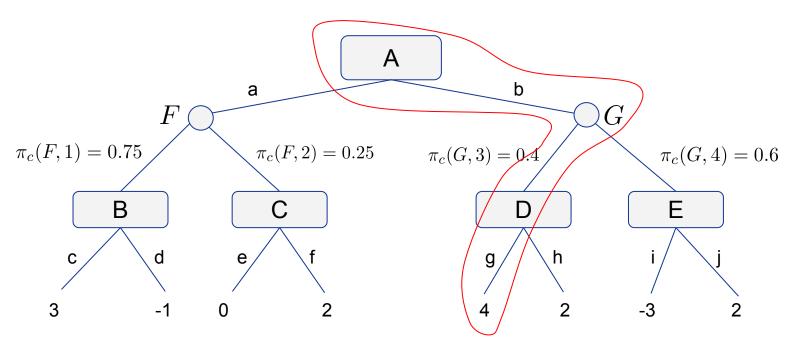


Terminal history A.K.A. Episode



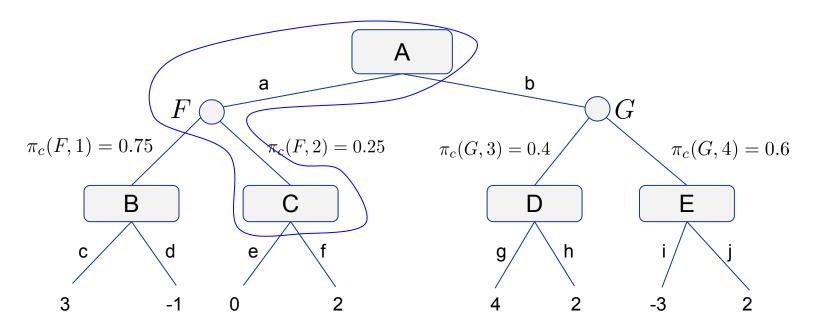
(A, a, F, 1, B, c) is a terminal history.

Terminal history A.K.A. Episode



(A, a, F, 1, B, c) is a *terminal* history. (A, b, G, 3, D, g) is a another terminal history.

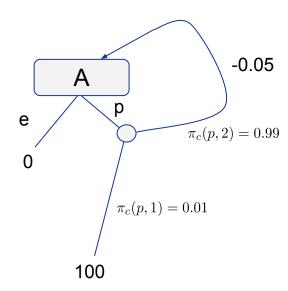
Prefix (non-terminal) Histories



(A, a, F, 2, C) is a history. It is a *prefix* of (A, a, F, 2, C, e) and (A, a, F, 2, C, f).

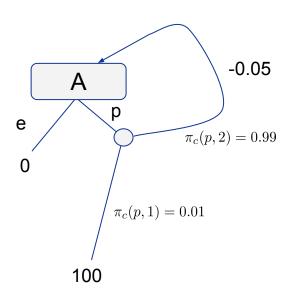
Perfect Recall of Actions and Observations

Another simple MDP:

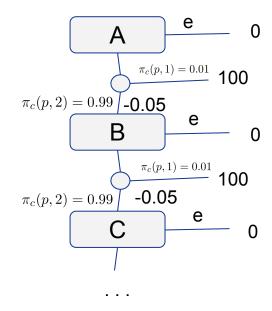


Perfect Recall of Actions and Observations

Another simple MDP:



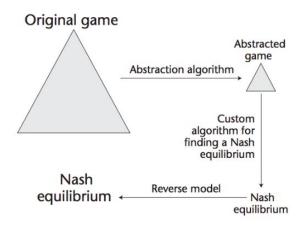
A different MDP:



Counterfactual Regret (CFR) Minimization

Zinkevich et al. '08

- Algorithm to compute an approx.
 Nash eq. in 2-player O-sum games
- Hugely successful in computer Poker
- Size usually reduced apriori based on expert knowledge
- Key innovations:
 - Counterfactual values
 - CFR Theorem

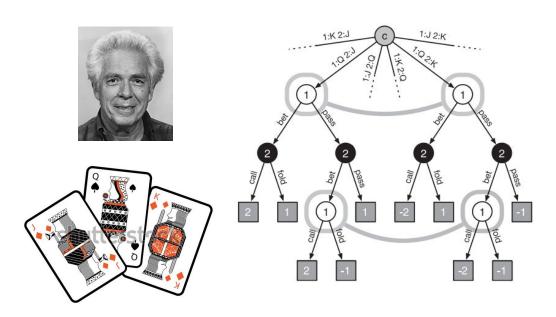


Source: Sandholm '10

Partially Observable Zero-Sum Games

Kuhn (simplified) poker

- Players start w/ 2 chips
- Each: ante 1 chip
- 3-card deck
- 2 actions: pass, bet
- Reward: money diff



- ullet An **information state**, S, corresponds to a sequence of observations
 - \circ with respect to the player to play at S

Ante: 1 chip per player,

, P1 bets (raise), P2 bets (call)

- ullet An **information state**, S, corresponds to a sequence of observations
 - \circ with respect to the player to play at S

private observation

Ante: 1 chip per player,

, P1 bets (raise), P2 bets (call)

- An **information state**, S, corresponds to a sequence of observations
 - \circ with respect to the player to play at S

private observation

Ante: 1 chip per player,

, P1 bets (raise), P2 bets (call)

Environment is in one of many world states $h \in s$

- ullet An **information state**, S, corresponds to a sequence of observations
 - \circ with respect to the player to play at S

private observation

Ante: 1 chip per player,

, P1 bets (raise), P2 bets (call)

Environment is in one of many world states $h \in s$

full **history** of actions (including nature's!!)

Goal: (Approximate) Nash Equilibria and minimax

Minimax & Nash equilibrium

von Neumann 1928

Nash 1950

$$v_1 = \max_{\pi_1} \min_{\pi_2} u_1(\pi_1, \pi_2)$$

$$v_1 = \min_{\pi_2} \max_{\pi_1} u_1(\pi_1, \pi_2)$$

In 2P zero-sum, these are the same!

Goal: (Approximate) Nash Equilibria and minimax

Minimax & Nash equilibrium

von Neumann 1928

Nash 1950

$$v_1 = \max_{\pi_1} \min_{\pi_2} u_1(\pi_1, \pi_2)$$

$$v_1 = \min_{\pi_2} \max_{\pi_1} u_1(\pi_1, \pi_2)$$

2P Zero-sum Equilibria

The optima: $\pi^* = (\pi_1^*, \pi_2^*)$

- Exist! (May be stochastic.)
- Called minimax-optimal joint policy
 - o A.K.A. Nash equilibrium
- They are interchangeable!

 Each policy is a best response to the other

In 2P zero-sum, these are the same!

CFR is policy iteration:

- 1. Evaluate policy to compute values
- 2. Improve the policy

CFR is (special kind of) policy iteration:

- 1. Evaluate policy to compute counterfactual values: $q_{\pi,i}^c(s,a)$, $v_{\pi,i}^c(s)$
- 2. Improve the policy (using state-local regret minimization)
- 3. Compute an average joint policy $\bar{\pi}=(\bar{\pi}_1,\bar{\pi}_2)$

CFR is (special kind of) policy iteration:

- 1. Evaluate policy to compute counterfactual values: $q_{\pi,i}^c(s,a)$, $v_{\pi,i}^c(s)$
- 2. Improve the policy (using state-local regret minimization)
- 3. Compute an average joint policy $\bar{\pi}=(\bar{\pi}_1,\bar{\pi}_2)$

CFR Theorem:
$$\bar{\pi}$$
 converges to an ϵ -Nash eq. with $\epsilon \leq O\left(\frac{1}{\sqrt{T}}\right)$

CFR is (special kind of) policy iteration:

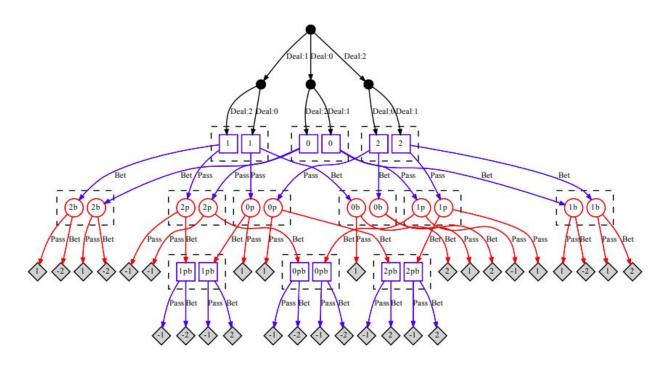
- 1. Evaluate policy to compute counterfactual values: $q_{\pi,i}^c(s,a)$, $v_{\pi,i}^c(s)$
- 2. Improve the policy (using state-local regret minimization)
- 3. Compute an average joint policy $\bar{\pi}=(\bar{\pi}_1,\bar{\pi}_2)$

CFR Theorem:
$$\bar{\pi}$$
 converges to an ϵ -Nash eq. with $\epsilon \leq O\left(\frac{1}{\sqrt{T}}\right)$

neither player can gain more than ϵ by deviating

Kuhn poker:

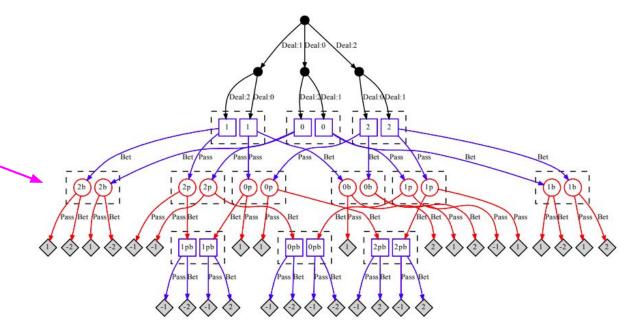
- Players: 2 chips
- 3-card deck
- Ante 1 chip
- Actions:
 - Pass
 - Bet
- Util = money diff
- Shown: util to p1



Uniform initial policies:

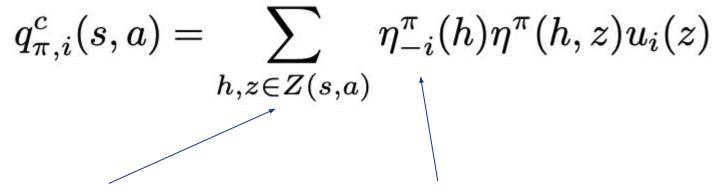
Let's compute CFR

values for state



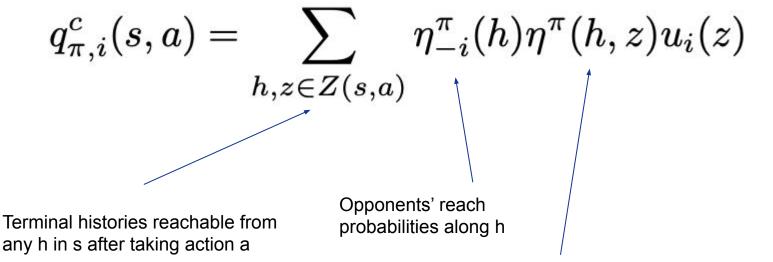
$$q_{\pi,i}^{c}(s,a) = \sum_{h,z \in Z(s,a)} \eta_{-i}^{\pi}(h) \eta^{\pi}(h,z) u_{i}(z)$$

Terminal histories reachable from any h in s after taking action a

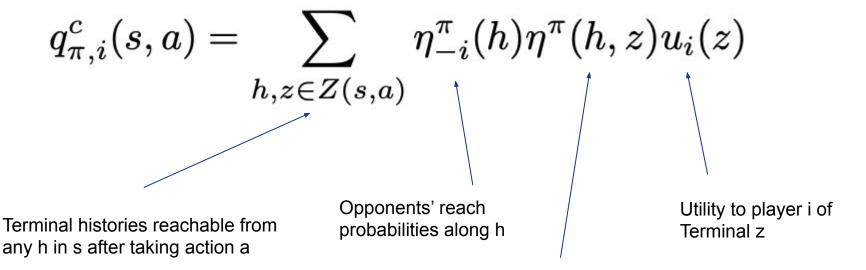


Terminal histories reachable from any h in s after taking action a

Opponents' reach probabilities along h



Both players' reach from h to z

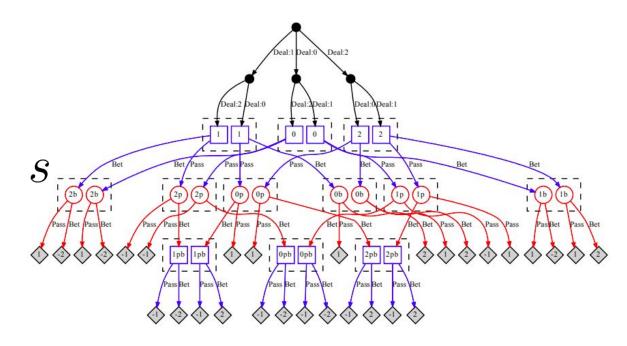


Both players' reach from h to z

$$v_{\pi,i}^{c}(s) = \sum_{a \in A(s)} \pi(s,a) q_{\pi,i}^{c}(s,a)$$

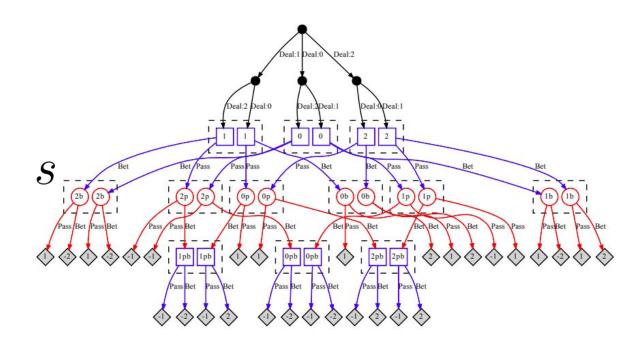
- h = 12b
- h' = 02b

$$q_{\pi,2}^{c}(s,p) = \frac{1}{12} \cdot \frac{1}{2} \cdot (-1)$$



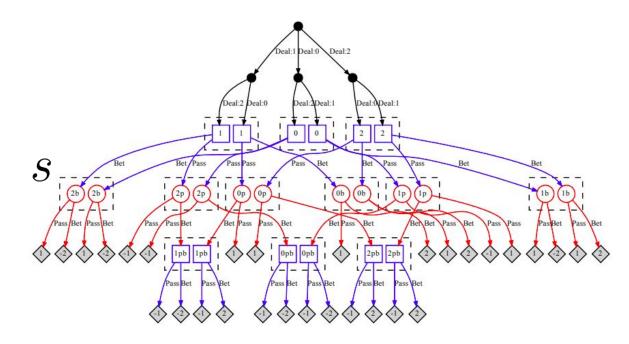
- h = 12b
- h' = 02b

$$q_{\pi,2}^{c}(s,p) = \frac{\frac{1}{12} \cdot \frac{1}{2} \cdot (-1)}{+\frac{1}{12} \cdot \frac{1}{2} \cdot (-1)}$$



- h = 12b
- h' = 02b

$$q_{\pi,2}^c(s,p) = -\frac{1}{12}$$



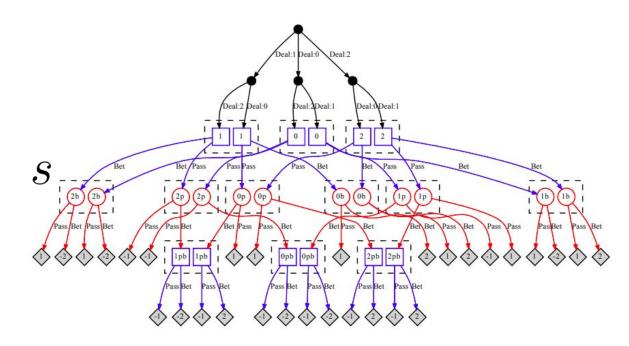
- h = 12b
- h' = 02b

$$q_{\pi,2}^c(s,p) = -\frac{1}{12}$$

 $q_{\pi,2}^c(s,b) =$

$$q_{\pi,2}^c(s,b) =$$

$$\frac{1}{12} \cdot \frac{1}{2} \cdot 2$$



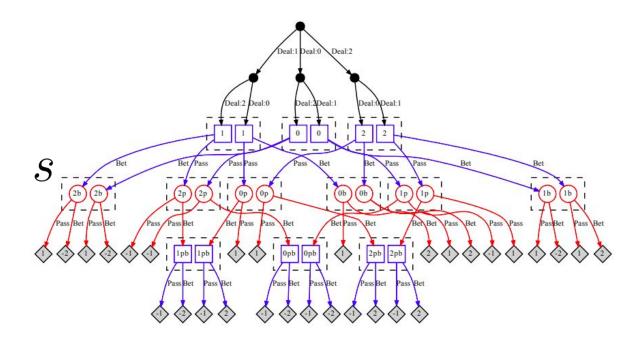
- h = 12b
- h' = 02b

$$q_{\pi,2}^c(s,p) = -\frac{1}{12}$$

$$q_{\pi,2}^c(s,b) =$$

$$\frac{1}{12} \cdot \frac{1}{2} \cdot 2$$

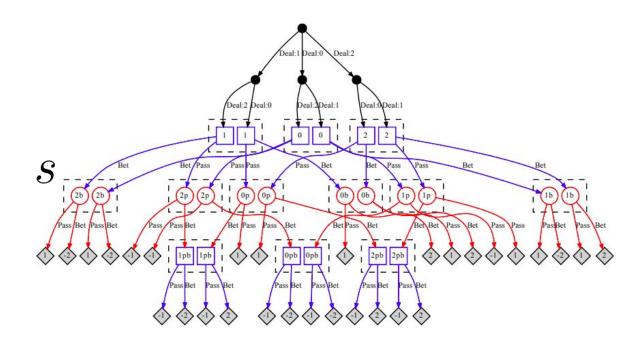
$$+ \frac{1}{12} \cdot \frac{1}{2} \cdot 2$$



- h = 12b
- h' = 02b

$$q_{\pi,2}^{c}(s,p) = -\frac{1}{12}$$
$$q_{\pi,2}^{c}(s,b) = \frac{1}{6}$$

$$q_{\pi,2}^c(s,b) = \frac{1}{6}$$

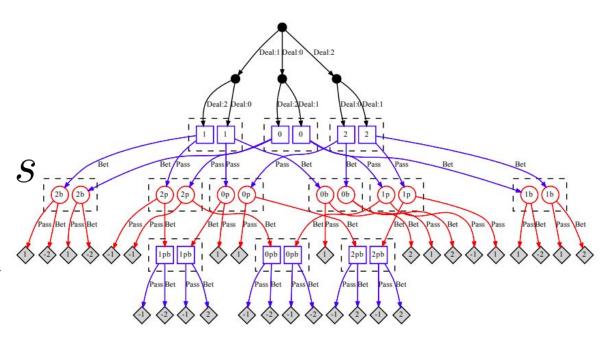


- h = 12b
- h' = 02b

$$q_{\pi,2}^{c}(s,p) = -\frac{1}{12}$$
$$q_{\pi,2}^{c}(s,b) = \frac{1}{6}$$

$$q_{\pi,2}^c(s,b) = \frac{1}{6}$$

$$v_{\pi,2}^c(s) = \frac{1}{2} \cdot \left(-\frac{1}{12}\right) + \frac{1}{2} \cdot \frac{1}{6}$$

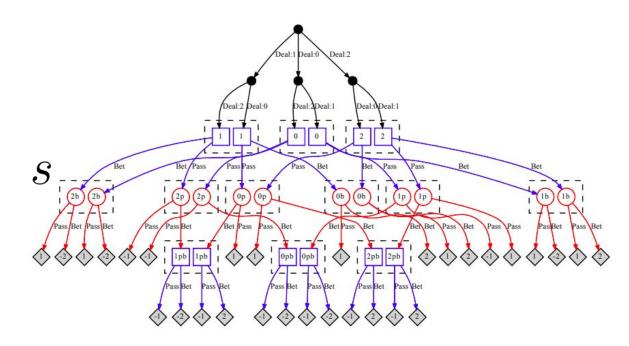


- h = 12b
- h' = 02b

$$q_{\pi,2}^c(s,p) = -\frac{1}{12}$$
$$q_{\pi,2}^c(s,b) = \frac{1}{6}$$

$$q_{\pi,2}^c(s,b) = \frac{1}{6}$$

$$v_{\pi,2}^c(s) = \frac{1}{24}$$



- h = 12b
- h' = 02b

$$q_{\pi,2}^c(s,p) = -\frac{1}{12}$$

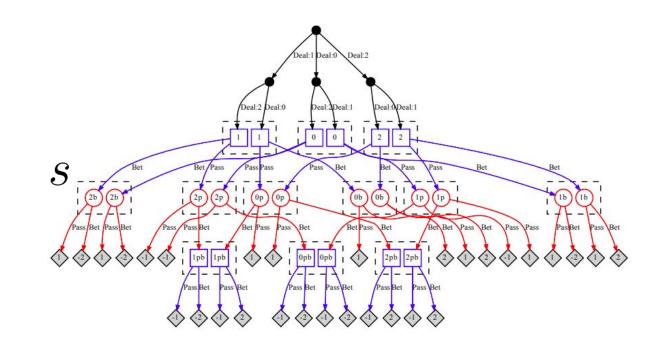
$$q_{\pi,2}^c(s,b) = \frac{1}{6}$$

$$v_{\pi,2}^c(s) = \frac{1}{24}$$

$$r(s,p) = q_{\pi,2}^c(s,p) - v_{\pi,2}^c(s) = -\frac{3}{24}$$

$$r(s,b) = \frac{3}{24}$$

$$ightarrow$$
 Update policy: $\pi(s,p)=0, \pi(s,b)=1$



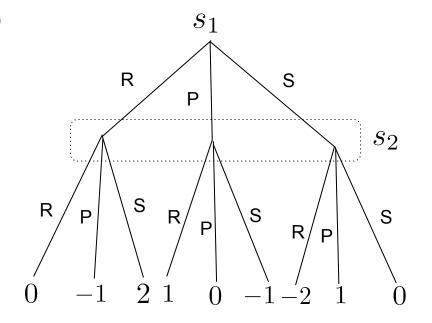
CFR Exercise

Biased Rock, Paper, Scissors: (utility for first player shown)

	R	P	S
R	0	-1	$\overline{\nu}$
P	1	0	-1
S	$-\nu$	1	0

Assume $\nu=2$.

- What is the policy at both states after one iteration of CFR?
- By inspection: what action will have the largest regret for player 2 in the next iteration? How does this affect their policy?



3.2a

Expected values vs. counterfactual values

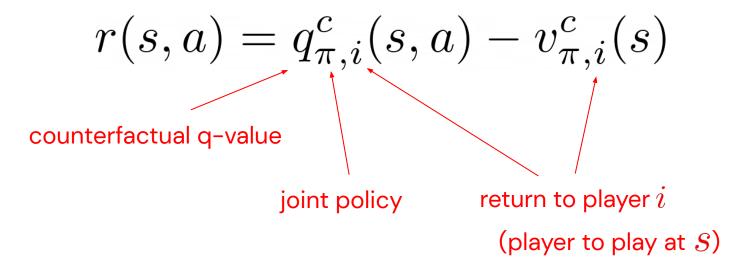
Advantage vs. Regrets

A key notion in CFR is an **immediate regret**:

$$r(s,a) = q_{\pi,i}^c(s,a) - v_{\pi,i}^c(s)$$

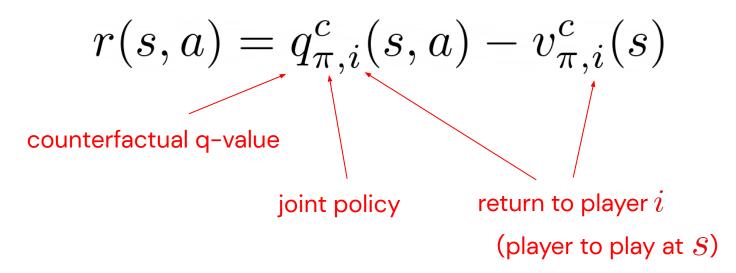
Advantage vs. Regrets

A key notion in CFR is an **immediate regret**:



Advantage vs. Regrets

A key notion in CFR is an **immediate regret**:



→ This is just a (counterfactual) advantage!

What..... is a q-value?

$$q_{\pi,i}(s,a)$$

What..... is a q-value?

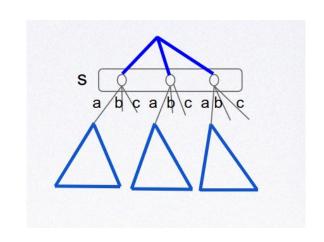
$$q_{\pi,i}(s,a)$$

Exp. return playing from S given:

s reached, take a , then follow π

What..... is a q-value?

$$q_{\pi,i}(s,a)$$



Exp. return playing from S given:

 ${m S}$ reached, take a , then follow π

What..... is a counterfactual value?

$$q_{\pi,i}^c(s,a)$$

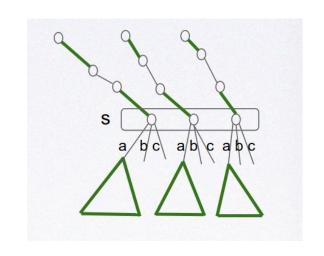
What..... is a counterfactual value?

$$q_{\pi,i}^c(s,a)$$

Portion of the exp. return to player i from start, given: player i plays to get to s (others use π), then take a

What..... is a counterfactual value?

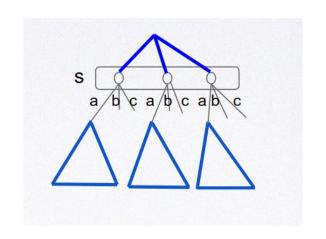
$$q_{\pi,i}^c(s,a)$$



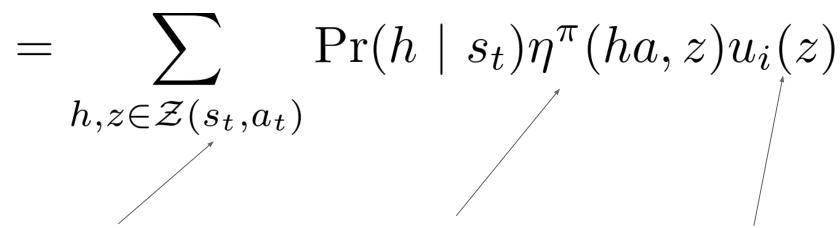
Portion of the exp. return to player i from start, given: player i plays to get to s (others use π), then take a

What..... is a q-value?

$$q_{\pi,i}(s,a)$$



$$q_{\pi,i}(s_t, a_t) = \mathbb{E}_{\rho \sim \pi}[G_t \mid S_t = s_t, A_t = a_t]$$



All **terminal histories** z reachable from s, paired with their prefix histories ha, where h is in s

Reach probabilities: product of all policies' state-action probabilities along the portion of the history between ha and z

Return achieved over terminal history z

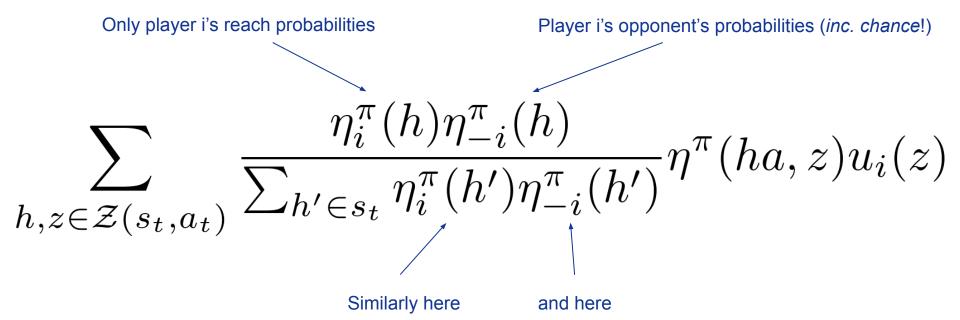
$$= \sum_{h,z \in \mathcal{Z}(s_t,a_t)} \frac{\Pr(s_t \mid h) \Pr(h)}{\Pr(s_t)} \eta^{\pi}(ha,z) u_i(z)$$

by Bayes' rule

$$= \sum_{h,z \in \mathcal{Z}(s_t,a_t)} \frac{\Pr(h)}{\Pr(s_t)} \eta^{\pi}(ha,z) u_i(z)$$

Since h is in s_t and unique to s_t

$$= \sum_{h,z\in\mathcal{Z}(s_t,a_t)} \frac{\eta^{\pi}(h)}{\sum_{h'\in s_t} \eta^{\pi}(h')} \eta^{\pi}(ha,z) u_i(z)$$



$$= \sum_{h,z \in \mathcal{Z}(s_t,a_t)} \frac{\eta_i^{\pi}(h)\eta_{-i}^{\pi}(h)}{\eta_i^{\pi}(h)\sum_{h' \in s_t} \eta_{-i}^{\pi}(h')} \eta^{\pi}(ha,z)u_i(z)$$

Due to perfect recall!

$$= \sum_{h,z \in \mathcal{Z}(s_t,a_t)} \frac{\eta_{-i}^{\pi}(h)}{\sum_{h' \in s_t} \eta_{-i}^{\pi}(h')} \eta^{\pi}(ha,z) u_i(z)$$

$$= \sum_{h,z \in \mathcal{Z}(s_t,a_t)} \frac{\eta_{-i}^{\pi}(h)}{\sum_{h' \in s_t} \eta_{-i}^{\pi}(h')} \eta^{\pi}(ha,z) u_i(z)$$

This is a counterfactual value!

$$= \frac{1}{\sum_{h \in s_t} \eta_{-i}^{\pi}(h)} q_{\pi,i}^c(s_t, a_t)$$

$$= \frac{1}{\beta_{-i}(\pi, s)} q_{\pi, i}^{c}(s_t, a_t)$$

Q-based Policy Gradient

A.K.A. "all-actions" policy gradient

A.K.A. Mean Actor-Critic (Allen et al. '17)

$$\nabla_{\boldsymbol{\theta}}^{\text{QPG}}(s) = \sum_{a} [\nabla_{\theta} \pi(s, a; \boldsymbol{\theta})] \left(q(s, a; \mathbf{w}) - \sum_{b} \pi(s, b; \boldsymbol{\theta}) q(s, b, \mathbf{w}) \right)$$

Regret-based Policy Gradient (Srinivasan et al. '18)

Instead of maximizing objective, minimize regret:

$$\nabla_{\boldsymbol{\theta}}^{\text{RPG}}(s) = -\sum_{a} \nabla_{\theta} \left(q(s, a; \mathbf{w}) - \sum_{b} \pi(s, b; \boldsymbol{\theta}) q(s, b; \mathbf{w}) \right)^{+}$$

Gradient descent (instead of ascent)

3.21

Monte Carlo Counterfactual Regret Minimization

Counterfactual Minimization

CFR is special kind of policy iteration:

- 1. Evaluate policy to compute counterfactual values: $q_{\pi,i}^c(s,a)$, $v_{\pi,i}^c(s)$
- 2. Improve the policy (using state-local regret minimization)
- 3. Compute an average joint policy $\bar{\pi}=(\bar{\pi}_1,\bar{\pi}_2)$

CFR Theorem:
$$\bar{\pi}$$
 converges to an ϵ -Nash eq. with $\epsilon \leq O\left(\frac{1}{\sqrt{T}}\right)$

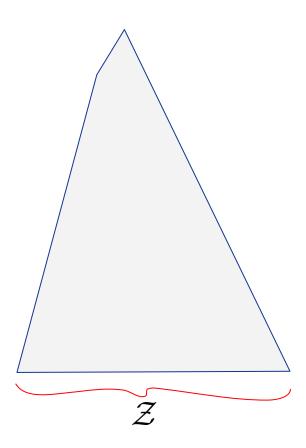
Monte Carlo Counterfactual Minimization

MCCFR is sample-based CFR:

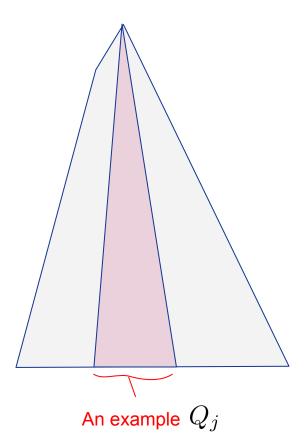
- 1. Evaluate estimated counterfactual values: $\hat{q}_{\pi,i}^c(s,a)$, $\hat{v}_{\pi,i}^c(s)$
- 2. Improve the policy (using state-local regret minimization)
- 3. Compute an estimated average joint policy $\hat{\bar{\pi}}=(\hat{\bar{\pi}}_1,\hat{\bar{\pi}}_2)$

MCCFR Theorem: with probability 1-p , $\hat{\overline{\pi}}$ converges to an ϵ -Nash eq. with

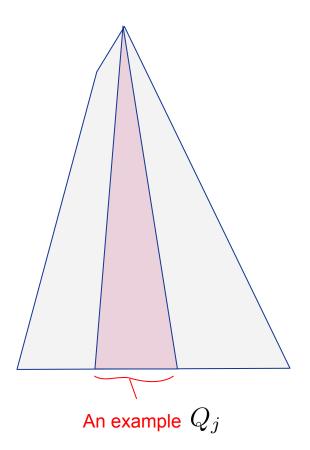
$$\epsilon \le O\left(\frac{1}{\delta\sqrt{pT}}\right)$$



ullet All terminal histories: ${\mathcal Z}$

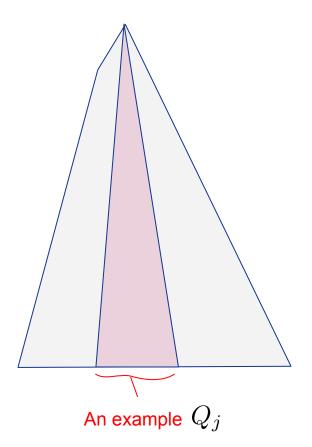


- All terminal histories: \mathcal{Z}
- Define blocks $Q_j \in \mathcal{Q}$:
 - $\circ \quad Q_j \subseteq \mathcal{Z} \text{ for all } \mathbf{j}$
 - $\circ \ \cup_j Q_j = \mathcal{Z}$



- All terminal histories: **Z**
- Define blocks $Q_j \in \mathcal{Q}$:
 - \circ $Q_j \subseteq \mathcal{Z}$ for all j
 - $\circ \cup_j Q_j = \mathcal{Z}$
- Sampled counterfactual values:

$$\tilde{v}_{\pi,i}^c(s|j) \quad \tilde{q}_{\pi,i}^c(s,a|j)$$



- All terminal histories: 7.
- Define blocks $Q_j \in \mathcal{Q}$:
 - \circ $Q_i \subseteq \mathcal{Z}$ for all j
 - $\circ \cup_j Q_j = \mathcal{Z}$
- Sampled counterfactual values:

$$\tilde{v}_{\pi,i}^c(s|j) \quad \tilde{q}_{\pi,i}^c(s,a|j)$$

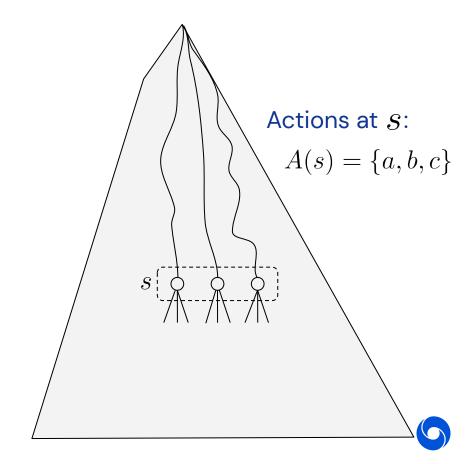
Sampled counterfactual regret:

$$\tilde{r}_{\pi,i}(s,a) = \tilde{q}_{\pi,i}^c(s,a|j) - \tilde{v}_{\pi,i}^c(s)$$

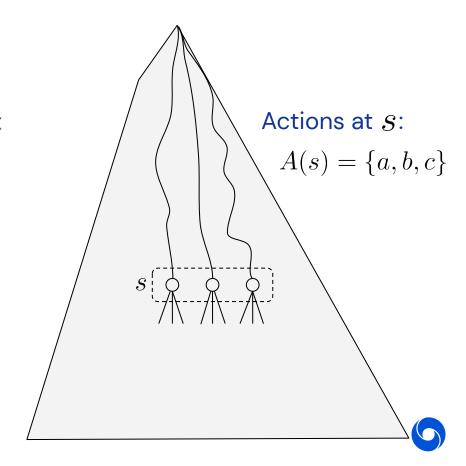
• Let $q_j = \Pr(Q_j)$

- Let $q_j = \Pr(Q_j)$
- Let $q(z) = \sum_{j:z \in Q_j} q_j$

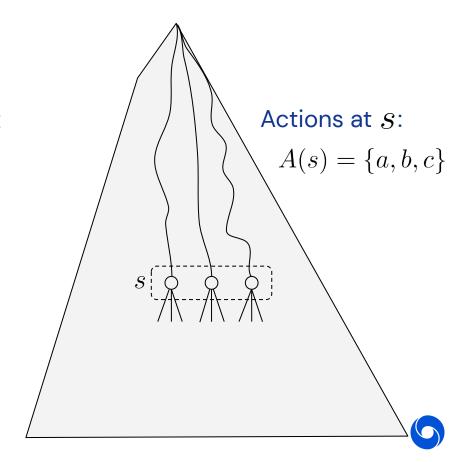
- Let $q_j = \Pr(Q_j)$ Let $q(z) = \sum_{j: z \in Q_j} q_j$



- Let $q_j = \Pr(Q_j)$
- Let $q(z) = \sum_{j:z \in Q_i} q_j$
- Let $h \sqsubseteq z$ mean that h is a **prefix**



- Let $q_j = \Pr(Q_j)$
- Let $q(z) = \sum_{j:z \in Q_j} q_j$
- Let $h \sqsubseteq z$ mean that h is a **prefix**
- Let $Z(s) = \{z \mid h \in s, h \sqsubseteq z\}$



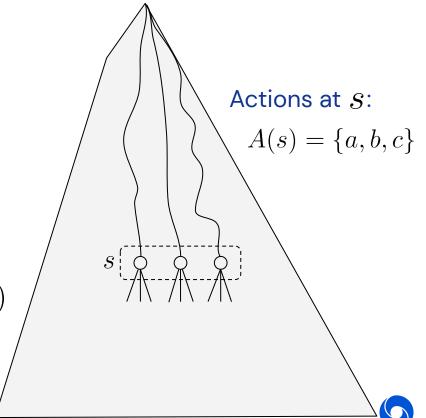
- Let $q_j = \Pr(Q_j)$
- Let $q(z) = \sum_{j:z \in Q_i} q_j$
- Let $h \sqsubseteq z$ mean that h is a **prefix**
- Let $Z(s) = \{z \mid h \in s, h \sqsubseteq z\}$

Sampled counterfactual value:

$$\tilde{v}_{\pi,i}^c(s|j) =$$

$$\sum_{h \in s, z \in Q_j \cap Z(s)} \frac{1}{q(z)} \eta_{-i}^{\pi}(h) \eta^{\pi}(h, z) u_i(z)$$
Reach probabilities

Utility to player i



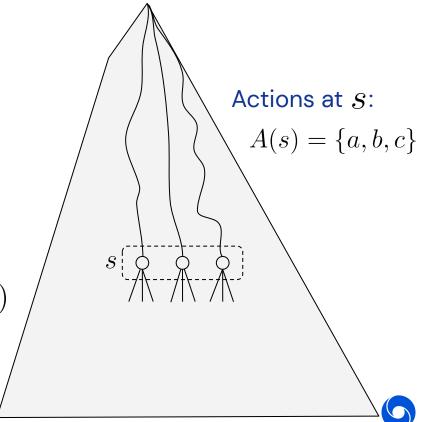
- Let $q_j = \Pr(Q_j)$
- Let $q(z) = \sum_{j:z \in Q_i} q_j$
- Let $h \sqsubseteq z$ mean that h is a **prefix**
- Let $Z(s) = \{z \mid h \in s, h \sqsubseteq z\}$

Sampled counterfactual value:

$$\tilde{v}_{\pi,i}^c(s|j) =$$

$$\sum_{h \in s, z \in Q_j \cap Z(s)} \widehat{\eta_{-i}^{\pi}(h)} \eta_{-i}^{\pi}(h) \eta^{\pi}(h, z) u_i(z)$$

Importance sampling correction term



$$\mathbb{E}[\tilde{v}_{\pi,i}^c(s|j)] = v_{\pi,i}^c(s)$$

$$\mathbb{E}[\tilde{v}_{\pi,i}^c(s|j)] =$$

$$\sum_{j} q_{j} \tilde{v}_{\pi,i}(s|j)$$

$$= \sum_{j} \sum_{h \in s, z \in Q_{j} \cap Z(s)} \frac{q_{j}}{q(z)} \eta_{-i}^{\pi}(h) \eta^{\pi}(h, z) u_{i}(z)$$

$$= \sum_{j} \sum_{h \in s, z \in Q_{j} \cap Z(s)} \frac{q_{j}}{q(z)} \eta_{-i}^{\pi}(h) \eta^{\pi}(h, z) u_{i}(z)$$

$$= \sum_{z \in Z(s)} \frac{\sum_{j:z \in Q_j} q_j}{q(z)} \eta_{-i}^{\pi}(h) \eta^{\pi}(h,z) u_i(z)$$

$$= \sum_{z \in Z(s)} \eta_{-i}^{\pi}(h) \eta^{\pi}(h, z) u_i(z)$$

$$= \sum_{z \in Z(s)} \eta_{-i}^{\pi}(h) \eta^{\pi}(h, z) u_i(z)$$

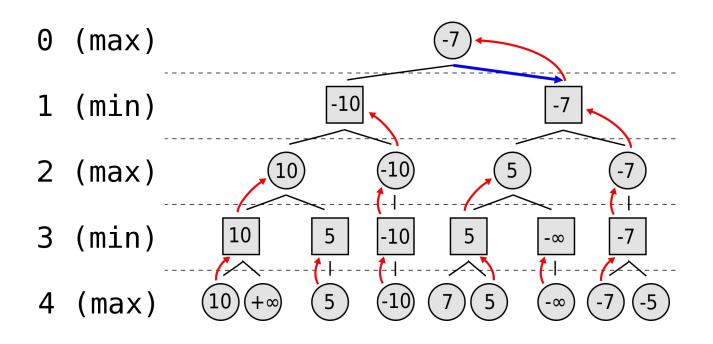
$$=v_{\pi,i}^c(s)$$

3.20

Search in Imperfect Information Games

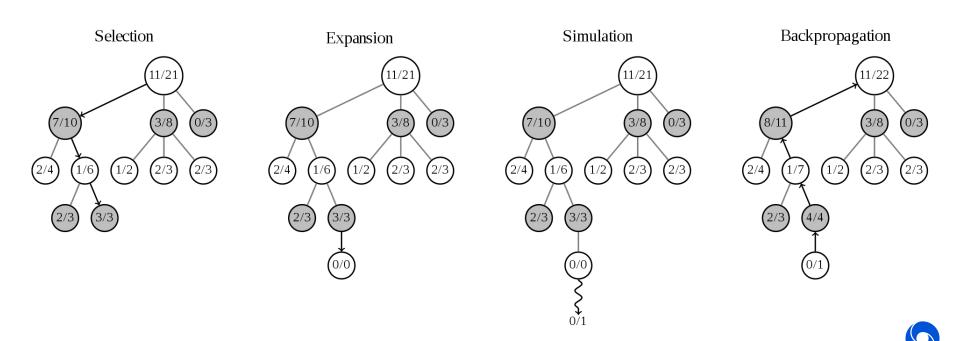
Search in Perfect Information Games

Classic Minimax game-tree search (von Neumann '28, Knuth & Moore '75)



Search in Perfect Information Games

Monte Carlo Tree Search (MCTS) (Coulom '06, Kocsis & Szepesvari '06)



Search in Imperfect Information Games

One solution: Perfect Information (Monte Carlo / Minimax)

- 1. Repeat:
 - a. Sample a world $h \sim D(s)$
 - b. Recommandation = PerfInfoSearch(s)
- 2. Aggregate recommendations and choose a single action

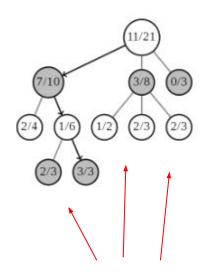
Two problems

- Strategy fusion: assumes one can use different strategies in different worlds— "averaging over clairvoyance" (Russell & Norvig)
- Non-locality: value of an information set is not expressable only from values of its subtrees

Fixing Strategy Fusion: Information Set MCTS

Aggregate MCTS statistics over information states!

- 1. Repeat:
 - a. Sample a world $h \sim D(s)$
 - b. Simulate using MCTS, storing store statististics at s s.t. $h \in s$
- 2. Return action with highest estimate



Nodes corresponds to information states, *not* worlds!

The Problem of Non-Locality (Lisy et al. '15)

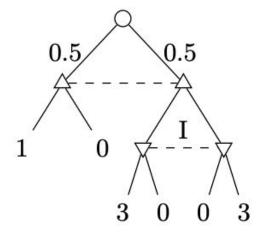


Figure 1: An extensive-form game demonstrating the problem of non-locality with maximizing \triangle , minimizing ∇ and chance \bigcirc players.

Subgame Decomposition

Solving Imperfect Information Games with Decomposition (Burch et al. '14)

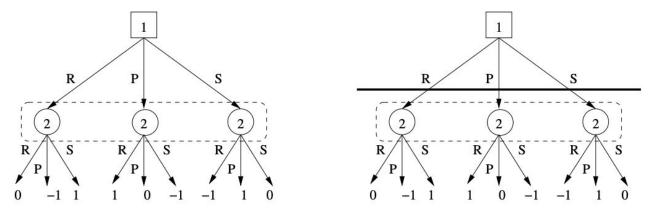


Figure 1: Left: rock-paper-scissors. Right: rock-paper-scissors split into trunk and one subgame.

Subgame Decomposition

"Solving Imperfect Information Games with Decomposition (Burch et al. '14)

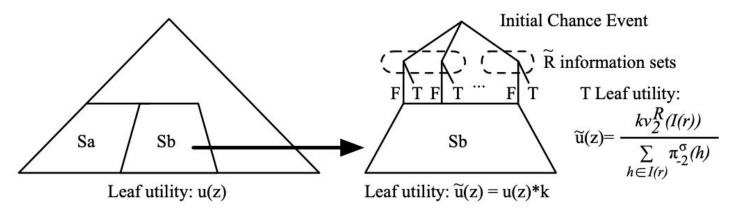


Figure 2: Construction of the Re-Solving Game

Practical Exercises with OpenSpiel

Private & Confidential

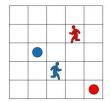
Plan

- Intro + install and test OpenSpiel
- 2. Run the example
- 3. Experiments:
 - a. Q-learning in Tic-Tac-Toe
 - a. CFR in Kuhn Poker

OpenSpiel

Figure 2: An initial board (left) and a situation requiring a probabilistic cloice for A (right).

- Open source framework for research in RL & Games
- C++, Python, and Swift impl's
- 25+ games
- 10+ algorithms



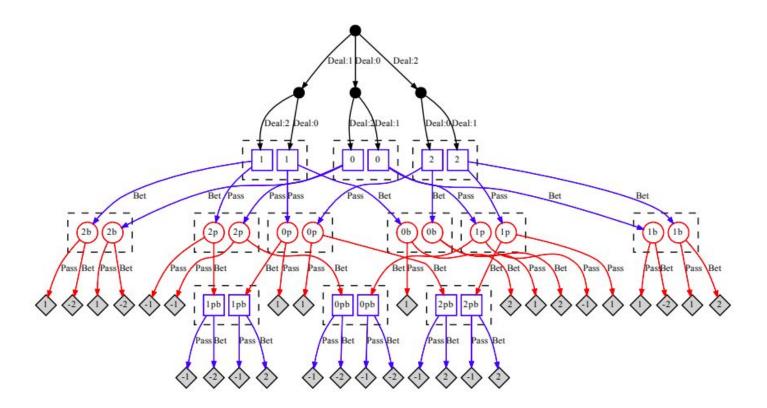
OpenSpiel

Supports:

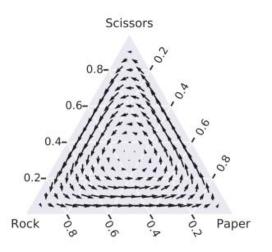
- n-player games
- Zero-sum, coop, general-sum
- Perfect / imperfect info
- Simultaneous-move games

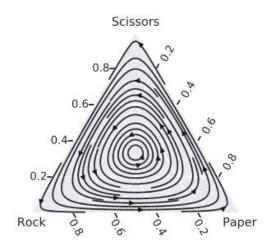
Paper @ https://arxiv.org/abs/1908.09453

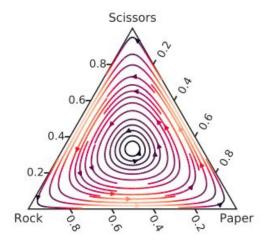
OpenSpiel: Example Viz (Kuhn Poker)



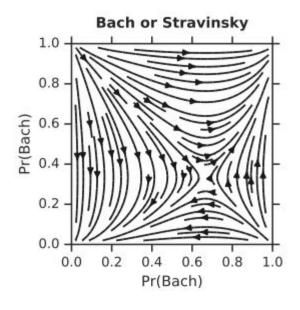
OpenSpiel: Example Viz (Replicator dynamics)

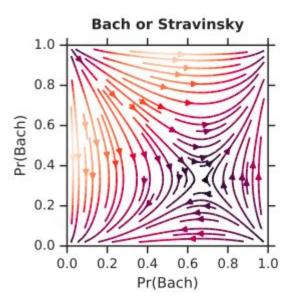






OpenSpiel: Example Viz (Replicator dynamics)





OpenSpiel: Design & Code

Design Philosophy

- 1. Keep it simple.
- 2. Keep it light.

Main structure:

- C++ core + Python API
- Swift port
- Go API (in the works)
- Games in C++
- Algs in C++ and Python
- Many examples / colabs

Example

```
import random
import pyspiel
import numpy as np
game = pyspiel.load game("kuhn poker")
state = game.new initial state()
while not state.is terminal():
  legal actions = state.legal actions()
  if state.is_chance_node():
    # Sample a chance event outcome.
    outcomes_with_probs = state.chance_outcomes()
    action list, prob list = zip(*outcomes with probs)
    action = np.random.choice(action list, p=prob list)
    state.apply action(action)
  else:
    # The algorithm can pick an action based on an observation (fully observable
    # games) or an information state (information available for that player)
    # We arbitrarily select the first available action as an example.
    action = legal actions[0]
    state.apply action(action)
```


Install OpenSpiel

- 1. Full instructions on here https://github.com/deepmind/open-spiel
- 2. Fast install instruction on page 6 of https://arxiv.org/abs/1908.09453:

```
sudo apt-get install git cmake g++
git clone https://github.com/deepmind/open_spiel.git
cd open_spiel
./install.sh # Install various dependencies (note: assumes Debian-based distro!)
pip3 install --upgrade -r requirements.txt # Install Python dependencies
mkdir build
cd build
# Note: Python version installed should be >= Python_TARGET_VERSION specified here
CXX=g++ cmake -DPython_TARGET_VERSION=3.6 -DCMAKE_CXX_COMPILER=g++ ../open_spiel
make -j12 # The 12 here is the number of parallel processes used to build
ctest -j12 # Run the tests to verify that the installation succeeded
```


Run the Example

First, set the PYTHONPATH (can add this to .bashrc, .profile, or .bash_profile)

```
# For the Python modules in open_spiel.
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>
# For the Python bindings of Pyspiel
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python
```

Once built:

```
cd ..
python3 open_spiel/python/examples/example.py
```


Interact from Python directly

```
[lanctot@lanctot-macbookair2:open_spiel$
[lanctot@lanctot-macbookair2:open_spiel$ python3
Python 3.7.4 (default, Aug 27 2019, 23:45:03)
[Clang 10.0.1 (clang-1001.0.46.4)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyspiel
[>>> game = pyspiel.load_game("tic_tac_toe")
(>>> state = game.new_initial_state()
>>> print(state)
...
>>> state.apply_action(4)
(>>> print(state)
.X.
(>>> print(state.legal_actions())
[0, 1, 2, 3, 5, 6, 7, 8]
>>> print(state.is_terminal())
False
(>>> print(state.current_player())
```


OpenSpiel Experiments

- 1. Run Q-learning in Tic-Tac-Toe for 100 episodes:
 - a. Can you beat the agent?
 - b. Try running it now for 100000 episodes? Is it harder to beat? If so, in what way?
- 2. Run CFR on Kuhn poker for 1 iteration:
 - a. Print the current policy. What do you notice about the it? Can you explain?
 - b. Print the average policy. What do you notice about the it? Can you explain?
 - c. Now run for 1000 iterations. What does the average strategy look like? Can you explain its general form?
- 3. Now, try to run CFR on Tic-Tac-Toe. Any idea why it takes so long?

```
python3 open_spiel/python/examples/tic_tac_toe_qlearner.py --num_episodes=100
python3 open_spiel/python/examples/cfr_example.py --iterations=1
Hint for 2: add a __str__ function to python.policy.TabularPolicy, which loops over
self.state_lookup, then uses action_probabilities_to get the policy for each info state
```


DeepMind

The end and thank you

Marc Lanctot

lanctot@google.com
mlanctot.info

