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Abstract

Optimization of parameterized policies for reinforcement learning (RL) is an impor-
tant and challenging problem in artificial intelligence. Among the most common
approaches are algorithms based on gradient ascent of a score function representing
discounted return. In this paper, we examine the role of these policy gradient and
actor-critic algorithms in partially-observable multiagent environments. We show
several candidate policy update rules and relate them to a foundation of regret
minimization and multiagent learning techniques for the one-shot and tabular cases,
leading to previously unknown convergence guarantees. We apply our method to
model-free multiagent reinforcement learning in adversarial sequential decision
problems (zero-sum imperfect information games), using RL-style function ap-
proximation. We evaluate on commonly used benchmark Poker domains, showing
performance against fixed policies and empirical convergence to approximate Nash
equilibria in self-play with rates similar to or better than a baseline model-free
algorithm for zero-sum games, without any domain-specific state space reductions.

1 Introduction

There has been much success in learning parameterized policies for sequential decision-making
problems. One paradigm driving progress is deep reinforcement learning (Deep RL), which uses
deep learning [52] to train function approximators that represent policies, reward estimates, or both,
to learn directly from experience and rewards [85]. These techniques have learned to play Atari
games beyond human-level [60], Go, chess, and shogi from scratch [82, 81], complex behaviors in
3D environments [59, 97, 37], robotics [27, 73], character animation [67], among others.

When multiple agents learn simultaneously, policy optimization becomes more complex. First, each
agent’s environment is non-stationary and naive approaches can be non-Markovian [58], violating the
requirements of many traditional RL algorithms. Second, the optimization problem is not as clearly
defined as maximizing one’s own expected reward, because each agent’s policy affects the others’
optimization problems. Consequently, game-theoretic formalisms are often used as the basis for
representing interactions and decision-making in multiagent systems [17, 79, 64].

Computer poker is a common multiagent benchmark domain. The presence of partial observability
poses a challenge for traditional RL techniques that exploit the Markov property. Nonetheless, there
has been steady progress in poker AI. Near-optimal solutions for heads-up limit Texas Hold’em were
found with tabular methods using state aggregation, powered by policy iteration algorithms based
on regret minimization [102, 87, 12]. These approaches were founded on a basis of counterfactual
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regret minimization (CFR), which is the root of recent advances in no-limit, such as Libratus [16]
and DeepStack [61]. However, (i) both required Poker-specific domain knowledge, and (ii) neither
were model-free, and hence are unable to learn directly from experience, without look-ahead search
using a perfect model of the environment.

In this paper, we study the problem of multiagent reinforcement learning in adversarial games with
partial observability, with a focus on the model-free case where agents (a) do not have a perfect
description of their environment (and hence cannot do a priori planning), (b) learn purely from
their own experience without explicitly modeling the environment or other players. We show that
actor-critics reduce to a form of regret minimization and propose several policy update rules inspired
by this connection. We then analyze the convergence properties and present experimental results.

2 Background and Related Work

We briefly describe the necessary background. While we draw on game-theoretic formalisms, we
align our terminology with RL. We include clarifications in Appendix A1. For details, see [79, 85].

2.1 Reinforcement Learning and Policy Gradient Algorithms

An agent acts by taking actions a ∈ A in states s ∈ S from their policy π : s→ ∆(A), where ∆(X)
is the set of probability distributions over X , which results in changing the state of the environment
st+1 ∼ T (st, at); the agent then receives an observation o(st, at, st+1) ∈ Ω and reward Rt.2 A sum
of rewards is a return Gt =

∑∞
t′=tRt′ , and aim to find π∗ that maximizes expected return Eπ[G0].3

Value-based solution methods achieve this by computing estimates of vπ(s) = Eπ[Gt | St = s], or
qπ(s, a) = Eπ[Gt | St = s,At = a], using temporal difference learning to bootstrap from other esti-
mates, and produce a series of ε-greedy policies π(s, a) = ε/|A|+(1− ε)I(a = argmaxa′ qπ(s, a′)).
In contrast, policy gradient methods define a score function J(πθ) of some parameterized (and
differentiable) policy πθ with parameters θ, and use gradient ascent directly on J(πθ) to update θ.

There have been several recent successful applications of policy gradient algorithms in complex
domains such as self-play learning in AlphaGo [80], Atari and 3D maze navigation [59], continuous
control problems [76, 54, 21], robotics [27], and autonomous driving [78]. At the core of several
recent state-of-the-art Deep RL algorithms [37, 22] is the advantage actor-critic (A2C) algorithm
defined in [59]. In addition to learning a policy (actor), A2C learns a parameterized critic: an estimate
of vπ(s), which it then uses both to estimate the remaining return after k steps, and as a control
variate (i.e. baseline) that reduces the variance of the return estimates.

2.2 Game Theory, Regret Minimization, and Multiagent Reinforcement Learning

In multiagent RL (MARL), n = |N | = |{1, 2, · · · , n}| agents interact within the same environment.
At each step, each agent i takes an action, and the joint action a leads to a new state st+1 ∼ T (st,at);
each player i receives their own separate observation oi(st,a, st+1) and reward rt,i. Each agent
maximizes their own return Gt,i, or their expected return which depends on the joint policy π.

Much work in classical MARL focuses on Markov games where the environment is fully observable
and agents take actions simultaneously, which in some cases admit Bellman operators [55, 103, 70, 69].
When the environment is partially observable, policies generally map to values and actions from
agents’ observation histories; even when the problem is cooperative, learning is hard [65].

We focus our attention to the setting of zero-sum games, where
∑
i∈N rt,i = 0. In this case,

polynomial algorithms exist for finding optimal policies in finite tasks for the two-player case. The
guarantees that Nash equilibrium provides are less clear for the (n > 2)-player case, and finding one
is hard [20]. Despite this, regret minimization approaches are known to filter out dominated actions,
and have empirically found good (e.g. competition-winning) strategies in this setting [74, 26, 48].

1Appendices are included in the technical report version of the paper; see [84].
2Note that in fully-observable settings, o(st, at, st+1) = st+1. In partially observable environments [39, 65],

an observation function O : S ×A → ∆(Ω) is used to sample o(st, at, st+1) ∼ O(st, at).
3 We assume finite episodic tasks of bounded length and leave out the discount factor γ to simplify the

notation, without loss of generality. We use γ(= 0.99)-discounted returns in our experiments.
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Partially observable environments require a few key definitions in order to define the notion of state.
A history h ∈ H is a sequence of actions from all players including the environment taken from
the start of an episode. The environment (also called “nature”) is treated as a player with a fixed
policy and there is a deterministic mapping from any h to the actual state of the environment. Define
an information state, st = {h ∈ H | player i’s sequence of observations, oi,t′<t(st′ ,at′ , st′+1),
is consistent with h}4. So, st includes histories leading to st that are indistinguishable to player i;
e.g. in Poker, the h ∈ st differ only in the private cards dealt to opponents. A joint policy π is a Nash
equilibrium if the incentive to deviate to a best response δi(π) = maxπ′i Eπ′i,π−i [G0,i]−Eπ[G0,i] =

0 for each player i ∈ N , where π−i is the set of i′s opponents’ policies. Otherwise, ε-equilibria are
approximate, with ε = maxi δi(π). Regret minimization algorithms produce iterates whose average
π̄ reduces an upper bound on ε, measured using NASHCONV(π) =

∑
i δi(π). Nash equilibrium is

minimax-optimal in two-player zero-sum games: using one minimizes worst-case losses.

There are well-known links between learning, game theory and regret minimization [9]. One method,
counterfactual regret (CFR) minimization [102], has led to significant progress in Poker AI. Let
ηπ(ht) =

∏
t′<t π(st′ , at′), where ht′ @ ht is a prefix, ht′ ∈ st′ , ht ∈ st, be the reach probability

of h under π from all policies’ action choices. This can be split into player i’s contribution and their
opponents’ (including nature’s) contribution, ηπ(h) = ηπi (h)ηπ−i(h). Suppose player i is to play at
s: under perfect recall, player i remembers the sequence of their own states reached, which is the
same for all h ∈ s, since they differ only in private information seen by opponent(s); as a result
∀h, h′ ∈ s, ηπi (h) = ηπi (h′) := ηπi (s). For some history h and action a, we call h a prefix history
h @ ha, where ha is the history h followed by action a; they may also be smaller, so h @ ha @
hab ⇒ h @ hab. Let Z = {z ∈ H | z is terminal} and Z(s, a) = {(h, z) ∈ H × Z | h ∈ s, ha v
z}. CFR defines counterfactual values vci (π, st, at) =

∑
(h,z)∈Z(st,at)

ηπ−i(h)ηπi (z)ui(z), and
vci (π, st) =

∑
a π(st, a)vci (π, st, at), where ui(z) is the return to player i along z, and accumulates

regrets REGi(π, st, a
′) = vci (π, st, a

′) − vci (π, st), producing new policies from cumulative regret
using e.g. regret-matching [28] or exponentially-weighted experts [6, 15].

CFR is a policy iteration algorithm that computes the expected values by visiting every possible
trajectory, described in detail in Appendix B. Monte Carlo CFR (MCCFR) samples trajectories using
an exploratory behavior policy, computing unbiased estimates v̂ci (π, st) and R̂EGi(π, st) corrected by
importance sampling [49]. Therefore, MCCFR is an off-policy Monte Carlo method. In one MCCFR
variant, model-free outcome sampling (MFOS), the behavior policy at opponent states is defined as
π−i enabling online regret minimization (player i can update their policy independent of π−i and T ).

There are two main problems with (MC)CFR methods: (i) significant variance is introduced by
sampling (off-policy) since quantities are divided by reach probabilities, (ii) there is no generalization
across states except through expert abstractions and/or forward simulation with a perfect model. We
show that actor-critics address both problems and that they are a form of on-policy MCCFR.

2.3 Most Closely Related Work

There is a rich history of policy gradient approaches in MARL. Early uses of gradient ascent showed
that cyclical learning dynamics could arise, even in zero-sum matrix games [83]. This was partly
addressed by methods that used variable learning rates [13, 11], policy prediction [99], and weighted
updates [1]. The main limitation with these classical works was scalability: there was no direct way
to use function approximation, and empirical analyses focused almost exclusively on one-shot games.

Recent work on policy gradient approaches to MARL addresses scalability by using newer algorithms
such as A3C or TRPO [76]. However, they focus significantly less (if at all) on convergence
guarantees. Naive approaches such as independent reinforcement learning fail to find optimal
stochastic policies [55, 32] and can overfit the training data [50]. Much progress has been achieved
for cooperative MARL: learning to communicate [51], Starcraft unit micromanagement [24], taxi
fleet optimization [63], and autonomous driving [78]. There has also been progress for mixed
cooperative/competitive environments: using a centralized critic [57], learning to negotiate [18],
anticipating/learning opponent responses in social dilemmas [23, 53], and control in realistic physical
environments [3, 7]. The most common methodology has been to train centrally (for decentralized
execution), either having direct access to the other players’ policy parameters or modeling them. As a
result, assumptions are made about the other agents’ policies, utilities, or learning mechanisms.

4In defining st, we drop the reference to acting player i in turn-based games without loss of generality.

3



There are also methods that attempt to model the opponents [36, 30, 4]. Our methods do no such
modeling, and can be classified in the “forget” category of the taxonomy proposed in [33]: that is,
due to its on-policy nature, actors and critics adapt to and learn mainly from new/current experience.

We focus on the model-free (and online) setting: other agents’ policies are inaccessible; training
is not separated from execution. Actor-critics were recently studied in this setting for multiagent
games [68], whereas we focus on partially-observable environments; only tabular methods are known
to converge. Fictitious Self-Play computes approximate best responses via RL [31, 32], and can
also be model-free. Regression CFR (RCFR) uses regression to estimate cumulative regrets from
CFR [93]. RCFR is closely related to Advantage Regret Minimization (ARM) [38]. ARM [38] shows
regret estimation methods handle partial observability better than standard RL, but was not evaluated
in multiagent environments. In contrast, we focus primarily on the multiagent setting.

3 Multiagent Actor-Critics: Advantages and Regrets

CFR defines policy update rules from thresholded cumulative counterfactual regret:
TCREGi(K, s, a) = (

∑
k∈{1,··· ,K} REGi(πk, s, a))+, where k is the number of iterations and

(x)+ = max(0, x). In CFR, regret matching updates a policy to be proportional to TCREGi(K, s, a).

On the other hand, REINFORCE [95] samples trajectories and computes gradients for each state st,
updating θ toward∇θ log(st, at;θ)Gt. A baseline is often subtracted from the return: Gt − vπ(st),
and policy gradients then become actor-critics, training π and vπ separately. The log appears due to the
fact that action at is sampled from the policy, the value is divided by π(st, at) to ensure the estimate
is properly estimating the true expectation [85, Section 13.3], and ∇θπ(st, at;θ)/π(st, at,θ) =
∇θ log π(st, at;θ). One could instead train qπ-based critics from states and actions. This leads to a
q-based Policy Gradient (QPG) (also known as Mean Actor-Critic [5]):

∇QPG
θ (s) =

∑
a

[∇θπ(s, a;θ)]

(
q(s, a;w)−

∑
b

π(s, b;θ)q(s, b,w)

)
, (1)

an advantage actor-critic algorithm differing from A2C in the (state-action) representation of the crit-
ics [56, 96] and summing over actions similar to the all-action algorithms [86, 71, 19, 5]. Interpreting
aπ(s, a) = qπ(s, a)−

∑
b π(s, b)qπ(s, b) as a regret, we can instead minimize a loss defined by an

upper bound on the thresholded cumulative regret:
∑
k(aπk(s, a))+ ≥ (

∑
k(aπk(s, a))+, moving

the policy toward a no-regret region. We call this Regret Policy Gradient (RPG):

∇RPG
θ (s) = −

∑
a

∇θ

(
q(s, a;w)−

∑
b

π(s, b;θ)q(s, b;w)

)+

. (2)

The minus sign on the front represents a switch from gradient ascent on the score to descent on the
loss. Another way to implement an adaptation of the regret-matching rule is by weighting the policy
gradient by the thresholded regret, which we call Regret Matching Policy Gradient (RMPG):

∇RMPG
θ (s) =

∑
a

[∇θπ(s, a;θ)]

(
q(s, a;w)−

∑
b

π(s, b;θ)q(s, b,w)

)+

. (3)

In each case, the critic q(st, at;w) is trained in the standard way, using `2 regression loss from
sampled returns. The pseudo-code is given in Algorithm 2 in Appendix C. In Appendix F, we show
that the QPG gradient is proportional to the RPG gradient at s: ∇RPG

θ (s) ∝ ∇QPG
θ (s).

3.1 Analysis of Learning Dynamics on Normal-Form Games

The first question is whether any of these variants can converge to an equilibrium, even in the
simplest case. So, we now show phase portraits of the learning dynamics on Matching Pennies: a
two-action version of Rock, Paper, Scissors. These analyses are common in multiagent learning as
they allow visual depiction of the policy changes and how different factors affect the (convergence)
behavior [83, 92, 13, 91, 11, 94, 1, 99, 98, 8, 89]. Convergence is difficult in Matching Pennies as
the only Nash equilibrium π∗ = ((1

2 ,
1
2 ), ( 1

2 ,
1
2 )) requires learning stochastic policies. We give more

detail and results on different games that cause cyclic learning behavior in Appendix D.
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(a) Replicator Dynamics (b) RPG Dynamics (c) Average RPG Dynamics

Figure 1: Learning Dynamics in Matching Pennies: (a) and (b) show the vector field for ∂π/∂t
including example particle traces, where each point is each player’s probability of their first action;
(c) shows example traces of policies following a discrete approximation to

∫ t
0
∂π/∂t.

In Figure 1, we see the similarity of the regret dynamics to replicator dynamics [88, 75]. We also
show the average policy dynamics and observe convergence to equilibrium in each game we tried,
which is a known to be guaranteed in two-player zero-sum games using CFR, fictitious play [14], and
continuous replicator dynamics [35]. However, computing the average policy is complex [31, 102]
and potentially worse with function approximation, requiring storing past data in large buffers [32].

3.2 Partially Observable Sequential Games

How do the values vci (π, st, at) and qπ,i(st, at) differ? The authors of [38] posit that they are
approximately equal when st rarely occurs more than once in a trajectory. First, note that st cannot
be reached more than once in a trajectory from our definition of st, because the observation histories
(of the player to play at st) would be different in each occurrence (i.e. due to perfect recall). So, the
two values are indeed equal in deterministic, single-agent environments. In general, counterfactual
values are conditioned on player i playing to reach st, whereas q-function estimates are conditioned
on having reached st. So, qπ,i(st, at) = Eρ∼π[Gt,i | St = st, At = at]

=
∑

h,z∈Z(st,at)

Pr(h | st)ηπ(ha, z)ui(z) where ηπ(ha, z) =
ηπ(z)

ηπ(h)π(s, a)

=
∑

h,z∈Z(st,at)

Pr(st | h) Pr(h)

Pr(st)
ηπ(ha, z)ui(z) by Bayes’ rule

=
∑

h,z∈Z(st,at)

Pr(h)

Pr(st)
ηπ(ha, z)ui(z) since h ∈ st, h is unique to st

=
∑

h,z∈Z(st,at)

ηπ(h)∑
h′∈st η

π(h′)
ηπ(ha, z)ui(z)

=
∑

h,z∈Z(st,at)

ηπi (h)ηπ−i(h)∑
h′∈st η

π
i (h′)ηπ−i(h

′)
ηπ(ha, z)ui(z)

=
∑

h,z∈Z(st,at)

ηπi (s)ηπ−i(h)

ηπi (s)
∑
h′∈st η

π
−i(h

′)
ηπ(ha, z)ui(z) due to def. of st and perfect recall

=
∑

h,z∈Z(st,at)

ηπ−i(h)∑
h′∈st η

π
−i(h

′)
ηπ(ha, z)ui(z) =

1∑
h∈st η

π
−i(h)

vci (π, st, at).

The derivation is similar to show that vπ,i(st) = vci (π, st)/
∑
h∈st η

π
−i(h). Hence, counterfactual

values and standard value functions are generally not equal, but are scaled by the Bayes normal-
izing constant B−i(π, st) =

∑
h∈st η

π
−i(h). If there is a low probability of reaching st due to the

environment or due to opponents’ policies, these values will differ significantly.
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This leads to a new interpretation of actor-critic algorithms in the multiagent partially observable
setting: the advantage values qπ,i(st, at)− vπ,i(st, at) are immediate counterfactual regrets scaled
by 1/B−i(π, st). This then determines requirements for convergence guarantees in the tabular case.

Note that the standard policy gradient theorem holds: gradients can be estimated from samples. This
follows from the derivation of the policy gradient in the tabular case (see Appendix E). When TD
bootstrapping is not used, the Markov property is not required; having multiple agents and/or partial
observability does not change this. For a proof using REINFORCE (Gt only), see [78, Theorem 1].
The proof trivially follows using Gt,i − vπ,i since vπ,i is trained separately and does not depend on ρ.

Policy gradient algorithms perform gradient ascent on JPG(πθ) = vπθ (s0), using ∇θJ
PG(πθ) ∝∑

s µ(s)
∑
a∇θπθ(s, a)qπ(s, a), where µ is on-policy distribution under π [85, Section 13.2]. The

actor-critic equivalent is ∇θJ
AC(πθ) ∝

∑
s µ(s)

∑
a∇θπθ(s, a)(qπ(s, a) −

∑
b π(s, b)qπ(s, b)).

Note that the baseline is unnecessary when summing over the actions and ∇θJ
AC(πθ) =

∇θJ
PG(πθ) [5]. However, our analysis relies on a projected gradient descent algorithm that does

not assume simplex constraints on the policy: in that case, in general∇θJ
AC(πθ) 6= ∇θJ

PG(πθ).

Definition 1. Define policy gradient policy iteration (PGPI) as a process that iteratively runs
θ ← θ + α∇θJ

PG(πθ), and actor-critic policy iteration (ACPI) similarly using ∇θJ
AC(πθ).

In two-player zero-sum games, PGPI/ACPI are gradient ascent-descent problems, because each
player is trying to ascend their own score function, and when using tabular policies a solution
exists due to the minimax theorem [79]. Define player i’s external regret over K steps as RKi =

maxπ′i∈Πi

(∑K
k=1 Eπ′i [G0,i]− Eπk [G0,i]

)
, where Πi is the set of deterministic policies.

Theorem 1. In two-player zero-sum games, when using tabular policies and an `2 projection
P (θ) = argminθ′∈∆(S,A) ‖θ − θ′‖2, where ∆(S,A) = {θ | ∀s ∈ S,

∑
b∈A θs,b = 1} is the space

of tabular simplices, if player i uses learning rates of αs,k = k−
1
2 ηπ

k

i (s)B−i(π, st) at s on iteration
k, and θks,a > 0 for all k and s, then projected PGPI, θk+1

s,· ← P ({θks,a + αs,k
∂

∂θks,a
JPG(πθk)}a),

has regret RKi ≤ 1
ηmin
i
|Si|

(√
K + (

√
K − 1

2 )|A|(∆r)2
)

, where Si is the set of player i’s states, ∆r

is the reward range, and ηmin
i = mins,k η

k
i (s). The same holds for projected ACPI (see appendix).

The proof is given in Appendix E. In the case of sampled trajectories, as long as every state is
reached with positive probability, Monte Carlo estimators of qπ,i will be consistent. Therefore, we
use exploratory policies and decay exploration over time. With a finite number of samples, the
probability that an estimator q̂π,i(s, a) differs by some quantity away from its mean is determined by
Hoeffding’s inequality and the reach probabilities. We suspect these errors could be accumulated to
derive probabilistic regret bounds similar to the off-policy Monte Carlo case [46].

What happens in the sampling case with a fixed per-state learning rate αs? If player i collects a
batch of data from many sampled episodes and applies them all at once, then the effective learning
rates (expected update rate relative to the other states) is scaled by the probability of reaching s:
ηπi (s)B−i(π, s), which matches the value in the condition of Theorem 1. This suggests using a
globally decaying learning rate to simulate the remaining k−

1
2 .

The analysis so far has concentrated on establishing guarantees for the optimization problem that
underlies standard formulation of policy gradient and actor-critic algorithms. A better guarantee can
be achieved by using stronger policy improvement (proof and details are found in Appendix E):

Theorem 2. Define a state-local JPG(πθ, s) = vπθ,i(s), composite gradient { ∂
∂θs,a

JPG(πθ, s)}s,a,
strong policy gradient policy iteration (SPGPI), and strong actor-critic policy iteration (SACPI) as
in Definition 1 except replacing the gradient components with ∂

∂θs,a
JPG(πθ, s). Then, in two-player

zero-sum games, when using tabular policies and projection P (θ) as defined in Theorem 1 with learn-
ing rates αk = k−

1
2 on iteration k, projected SPGPI, θk+1

s,· ← P ({θks,a + αk
∂

∂θks,a
JPG(πθ, s)}a),

has regret RKi ≤ |Si|
(√

K + (
√
K − 1

2 )|A|(∆r)2
)

, where Si is the set of player i’s states and ∆r

is the reward range. This also holds for projected SACPI (see appendix).
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4 Empirical Evaluation

We now assess the behavior of the actor-critic algorithms in practice. While the analyses in the
previous section established guarantees for the tabular case, ultimately we want to assess scalability
and generalization potential for larger settings. Our implementation parameterizes critics and policies
using neural networks with two fully-connected layers of 128 units each, and rectified linear unit
activation functions, followed by a linear layer to output a single value q or softmax layer to output π.
We chose these architectures to remain consistent with previous evaluations [32, 50].

4.1 Domains: Kuhn and Leduc Poker

We evaluate the actor-critic algorithms on two n-player games: Kuhn poker, and Leduc poker.

Kuhn poker is a toy game where each player starts with 2 chips, antes 1 chip to play, and receives
one card face down from a deck of size n+ 1 (one card remains hidden). Players proceed by betting
(raise/call) by adding their remaining chip to the pot, or passing (check/fold) until all players are
either in (contributed as all other players to the pot) or out (folded, passed after a raise). The player
with the highest-ranked card that has not folded wins the pot.

In Leduc poker, players have a limitless number of chips, and the deck has size 2(n+ 1), divided
into two suits of identically-ranked cards. There are two rounds of betting, and after the first round a
single public card is revealed from the deck. Each player antes 1 chip to play, and the bets are limited
to two per round, and number of chips limited to 2 in the first round, and 4 in the second round.

The rewards to each player is the number of chips they had after the game minus before the game. To
remain consistent with other baselines, we use the form of Leduc described in [50] which does not
restrict the action space, adding reward penalties if/when illegal moves are chosen.

4.2 Baseline: Neural Fictitious Self-Play

We compare to one main baseline. Neural Fictitious Self-Play (NFSP) is an implementation of
fictitious play, where approximate best responses are used in place of full best response [32]. Two
transition buffers of are used: DRL andDML; the former to train a DQN agent towards a best response
πi to π̄−i, data in the latter is replaced using reservoir sampling, and trains π̄i by classification.

4.3 Main Performance Results

Here we show the empirical convergence to approximate Nash equlibria for each algorithm in self-
play, and performance against fixed bots. The standard metric to use for this is NASHCONV(π)
defined in Section 2.2, which reports the accuracy of the approximation to a Nash equilibrium.

Training Setup. In the domains we tested, we observed that the variance in returns was high and
hence we performed multiple policy evaluation updates (q-update for∇QPG ,∇RPG, and∇RMPG, and
v-update for A2C) followed by policy improvement (policy gradient update). These updates were
done using separate SGD optimizers with their respective learning rates of fixed 0.001 for policy
evaluation, and annealed from a starting learning rate to 0 over 20M steps for policy improvement.
(See Appendix G for exact values). Further, the policy improvement step is applied after Nq policy
evaluation updates. We treatNq and batch size as a hyper parameters and sweep over a few reasonable
values. In order to handle different scales of rewards in the multiple domains, we used the streaming
Z-normalization on the rewards, inspired by its use in Proximal Policy Optimization (PPO) [77]. In
addition, the agent’s policy is controlled by a(n inverse) temperature added as part of the softmax
operator. The temperature is annealed from 1 to 0 over 1M steps to ensure adequate state space
coverage. An additional entropy cost hyper-parameter is added as is standard practice with Deep RL
policy gradient methods such as A3C [59, 77]. For NFSP, we used the same values presented in [50].

Convergence to Equilibrium. See Figure 2 for convergence results. Please note that we plot the
NASHCONV for the average policy in the case of NFSP, and the current policy in the case of the policy
gradient algorithms. We see that in 2-player Leduc, the actor-critic variants we tried are similar in
performance; NFSP has faster short-term convergence but long-term the actor critics are comparable.
Each converges significantly faster than A2C. However RMPG seems to plateau.
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Figure 2: Empirical convergence rates for NASHCONV(π) and performance versus CFR agents.

Performance Against Fixed Bots. We also measure the expected reward against fixed bots, averaged
over player seats. These bots, CFR500, correspond to the average policy after 500 iterations of CFR.
QPG and RPG do well here, scoring higher than A2C and even beating NFSP in the long-term.

5 Conclusion

In this paper, we discuss several update rules for actor-critic algorithms in multiagent reinforcement
learning. One key property of this class of algorithms is that they are model-free, leading to a
purely online algorithm, independent of the opponents and environment. We show a connection
between these algorithms and (counterfactual) regret minimization, leading to previously unknown
convergence properties underlying model-free MARL in zero-sum games with imperfect information.

Our experiments show that these actor-critic algorithms converge to approximate Nash equilibria in
commonly-used benchmark Poker domains with rates similar to or better than baseline model-free
algorithms for zero-sum games. However, they may be easier to implement, and do not require storing
a large memory of transitions. Furthermore, the current policy of some variants do significantly better
than the baselines (including the average policy of NFSP) when evaluated against fixed bots. Of the
actor-critic variants, RPG and QPG seem to outperform RMPG in our experiments.

As future work, we would like to formally develop the (probabilistic) guarantees of the sample-based
on-policy Monte Carlo CFR algorithms and/or extend to continuing tasks as in MDPs [41]. We are
also curious about what role the connections between actor-critic methods and CFR could play in
deriving convergence guarantees in model-free MARL for cooperative and/or potential games.

Acknowledgments. We would like to thank Martin Schmid, Audrūnas Gruslys, Neil Burch, Noam
Brown, Kevin Waugh, Rich Sutton, and Thore Graepel for their helpful feedback and support.
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